首页> 外文学位 >Computational studies in catalytic combustion of methyl chloride and methane.
【24h】

Computational studies in catalytic combustion of methyl chloride and methane.

机译:甲基氯和甲烷催化燃烧的计算研究。

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the advantages and disadvantages of utilization of progressively complex models for computational studies in catalytic combustion. Several computational models from simple one-dimensional to detailed two-dimensional models are developed for studying non-catalytic/catalytic ignition of methane over a flat plate and catalytic incineration of methyl-chloride inside a tube. Finite difference and modified damped Newton's method are implemented to solve the coupled non-linear parabolic and elliptic partial differential equations for the conservation of total mass, momentum energy and species.; Catalytic incineration of CH{dollar}sb3{dollar}Cl inside a tube is investigated with a plug flow and boundary layer model. For the experimental conditions investigated in this study, the prediction from the computationally inexpensive plug flow model is similar to a computationally expensive parabolic model. The models correctly predict the lower temperature requirement of the catalyst stabilized combustion for complete destruction of the CH{dollar}sb3{dollar}Cl. Surface reactions responsible for coupling gas-phase reactions with the surface are identified. The predictions for the product profiles by both models qualitatively match the experimental data.; Predictions from a boundary layer model and a full two-dimensional elliptic model are compared for both non-catalytic and catalytic ignition over a flat plate. Depending on the equivalence ratio and temperature maintained at the wall, the predictions far downstream from the leading edge are either similar or different. Very close to the leading edge the predictions differ. Criteria based on the wall temperature and inlet fuel equivalence ratio are developed to aid in the determination of which model to utilize for catalytic combustion of methane. For fuels other than methane, a qualitative criterion of flame penetration prediction by the boundary layer model can be utilized to determine whether or not to use fully elliptic two-dimensional model.; Several global surface reaction models are utilized to explore the impact of the uncertainty in the rate over a catalytic Pt-surface, found in the literature on prediction of combustion characteristics. Catalytic consumption of fuel in the boundary layer has been identified as the principal reason for delay in the gas-phase ignition of methane for the catalytic problem.
机译:这项研究调查了在催化燃烧的计算研究中使用渐进复杂模型的优缺点。从简单的一维模型到详细的二维模型,开发了几种计算模型,用于研究平板上甲烷的非催化/催化点火和管内甲烷的催化焚烧。采用有限差分法和改进的阻尼牛顿法求解非线性抛物线和椭圆形偏微分方程,以守恒总质量,动量能量和物种。利用塞流和边界层模型研究了管内CH {dols} sb3 {dollar} Cl的催化焚烧。对于本研究中研究的实验条件,计算上便宜的塞流模型的预测类似于计算上昂贵的抛物线模型。该模型正确预测了催化剂稳定燃烧的较低温度要求,以完全破坏CH {dollar} sb3 {dollar} Cl。确定了负责将气相反应与表面偶联的表面反应。两种模型对产品概况的预测在质量上与实验数据相匹配。比较了边界层模型和完整的二维椭圆模型的预测,以预测平板上的非催化点火和催化点火。取决于当量比和墙面保持的温度,远离前沿的预测是相似的还是不同的。预测与前沿非常接近。制定了基于壁温和入口燃料当量比的标准,以帮助确定哪种模型用于甲烷的催化燃烧。对于除甲烷之外的其他燃料,可以利用边界层模型预测火焰渗透的定性标准来确定是否使用全椭圆二维模型。利用几种全局表面反应模型来探索速率的不确定性对催化Pt表面的影响,这在有关燃烧特性预测的文献中可以找到。边界层中燃料的催化消耗已被确定为甲烷气相点火引起的催化问题延迟的主要原因。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号