首页> 外文学位 >Design of Ultra-Wideband Reflectors.
【24h】

Design of Ultra-Wideband Reflectors.

机译:超宽带反射器的设计。

获取原文
获取原文并翻译 | 示例

摘要

It is well-known that reflectarrays typically have a narrow bandwidth which is commonly attributed to the resonant nature of the antenna elements used and the narrow bandwidth of the phase shifting networks used. Typical approaches to increase the bandwidth include the use of true-time-delay (TTD) devices, coupling multiple resonances together, stacking multiple layer of scatterers or the use of numerical optimization techniques. While these approaches have been shown to improve the bandwidth of reflectarrays, the upper bound remains at approximately 40 in fractional bandwidth. This thesis investigates how ultra-wideband reflectors can be designed using novel approaches going beyond the conventional approaches listed above. Specifically, we investigate two new methods to design reflectarrays. In the first method, the reflector is designed as a Transformation Optics (TO) device and in the second method, the reflector is designed as a metasurface. The TO method amounts to manipulating of electromagnetic waves using an appropriate set of material parameters such that the wave propagation inside the material behaves in a desired manner. We use TO as a means to design an ultra-wideband reflector and draw insights into the practical considerations associated with designing such a reflector. In the second method, we design a reflectarray as a metasurface. Traditionally, reflectarrays are considered to be an array of individual antenna elements with no surface properties typically defined. A metasurface often has homogenized surface properties such as surface impedance and admittance which are realized by sub-wavelength elements that make up the reflector. A novel method to design ultra-wideband reflector using a metasurface is derived from first principles and it is shown that the designed reflector exhibits excellent characteristics over a very wide band of frequencies. The advantages and disadvantages of the reflectors designed using each of these two methods are discussed. A comparison of our metasurface is made to a state-of-the-art wideband reflectarray.
机译:众所周知,反射阵列通常具有较窄的带宽,这通常归因于所使用的天线元件的谐振特性和所使用的相移网络的较窄带宽。增加带宽的典型方法包括使用实时延迟(TTD)设备,将多个共振耦合在一起,堆叠多个散射体或使用数值优化技术。虽然这些方法已显示可改善反射阵列的带宽,但其上限仍保持在分数带宽的大约40。本文研究了如何使用超越上述常规方法的新颖方法来设计超宽带反射器。具体来说,我们研究了两种设计反射数组的新方法。在第一种方法中,将反射器设计为转换光学(TO)装置,在第二种方法中,将反射器设计为超表面。 TO方法等于使用一组适当的材料参数来操纵电磁波,以使材料内部的波传播以所需的方式表现。我们使用TO作为一种设计超宽带反射器的方法,并从洞察力中了解与设计这种反射器相关的实际考虑因素。在第二种方法中,我们将反射数组设计为超表面。传统上,反射阵列被认为是单个天线元件的阵列,通常没有定义表面特性。超表面通常具有均匀的表面特性,例如表面阻抗和导纳,这是由构成反射器的亚波长元素实现的。从第一原理出发,提出了一种使用超颖表面设计超宽带反射器的新颖方法,结果表明,所设计的反射器在非常宽的频率范围内均具有出色的特性。讨论了使用这两种方法设计的反射器的优缺点。我们将超颖表面与最先进的宽带反射阵列进行了比较。

著录项

  • 作者

    Liang, Liang.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号