首页> 外文学位 >Modeling of dynamic fragmentation in brittle materials.
【24h】

Modeling of dynamic fragmentation in brittle materials.

机译:脆性材料中动态破碎的建模。

获取原文
获取原文并翻译 | 示例

摘要

Fragmentation of brittle materials under high rates of loading is commonly encountered in materials processing and under impact loading conditions. Theoretical models intended to correlate the features of dynamic fragmentation have been suggested during the past few years with the goal of providing a rational basis for prediction of fragment sizes.; In this thesis, a new model based on the dynamics of the process is developed. In this model, the spatial distribution and strength variation representative of flaws in real brittle materials are taken into account. The model captures the competition between rising mean stress in a brittle material due to an imposed high strain rate and falling mean stress due to loss of compliance.; The model is studied computationally through an adaptation of a concept introduced by Xu and Needleman (1994). The deformable body is first divided into many small regions. Then, the mechanical behavior of the material is characterized by two constitutive relations, a volumetric constitutive relationship between stress and strain within the small continuous regions and a cohesive surface constitutive relationship between traction and displacement discontinuity across the cohesive surfaces between the small regions. These surfaces provide prospective fracture paths.; Numerical experiments were conducted for a system with initial and boundary conditions similar to those invoked in the simple energy balance models, in order to provide a basis for comparison. It is found that, these models lead to estimates of fragment size which are an order of magnitude larger than those obtained by a more detailed calculation. The differences indicate that the simple analytical models, which deal with the onset of fragmentation but not its evolution, are inadequate as a basis for a complete description of a dynamic fragmentation process.; The computational model is then adapted to interpret experimental observations on the increasing energy dissipation for increasing crack speed during dynamic crack growth in a brittle material. This higher energy consumption is due to a combination of a fixed amount of energy expended per unit area of created surface and a large increase in the surface area due to the formation of many unstable branches of the main crack. This interpretation has been proposed by Sharon et al. (1996) and it is supported by the computational results presented here.
机译:在材料的加工过程中以及在冲击载荷条件下,高载荷率下的脆性材料通常会破碎。在过去的几年中,已经提出了旨在关联动态片段特征的理论模型,目的是为预测片段大小提供合理的基础。本文提出了一种基于过程动力学的新模型。在该模型中,考虑了代表实际脆性材料中缺陷的空间分布和强度变化。该模型捕获了由于施加高应变率而导致的脆性材料中的平均应力上升与由于顺应性下降而导致的平均应力下降之间的竞争。该模型是通过对Xu和Needleman(1994)引入的概念进行改编而进行计算研究的。首先将可变形体分为许多小区域。然后,材料的机械行为由两个本构关系表征,即小连续区域内应力和应变之间的体积本构关系以及小区域之间跨内聚力表面的牵引力和位移不连续性之间的内聚本构关系。这些表面提供了预期的断裂路径。为了对初始条件和边界条件与简单能量平衡模型中调用的条件相似的系统进行数值实验,以提供比较的基础。发现,这些模型导致片段大小的估计,其大小比通过更详细的计算获得的估计值大一个数量级。差异表明,处理碎片开始而不是碎片演变的简单分析模型不足以作为动态碎片过程完整描述的基础。然后,该计算模型适用于解释关于在脆性材料中动态裂纹扩展过程中增加的能量耗散以增加裂纹速度的实验观察结果。这种较高的能量消耗是由于每单位生成的表面面积消耗固定量的能量以及由于主裂纹的许多不稳定分支的形成而导致的表面积大量增加的结合。 Sharon等人已经提出了这种解释。 (1996年),并在这里提出的计算结果的支持。

著录项

  • 作者

    Miller, Olga.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号