首页> 外文学位 >Fluid-driven fracture and melt transport through lithosphere on earth and terrestrial planets.
【24h】

Fluid-driven fracture and melt transport through lithosphere on earth and terrestrial planets.

机译:流体驱动的裂缝和熔体通过地球和地球行星上的岩石圈传输。

获取原文
获取原文并翻译 | 示例

摘要

Fluid-driven fracture is a fundamental geophysical phenomenon operating in planetary interiors on many scales. A few examples of geological processes involving fluid transport via self-induced fractures include melt segregation in the mantle, magma ascent through the lithosphere, crustal accretion at mid-ocean ridges and volcanic “hot spots”, migration of metamorphic and sedimentary fluids in the crust, etc. Overall, fluid-driven (in particular, magma-driven) fracture plays a major role in chemical differentiation of the upper mantle. Because our ability to make direct observations of the dynamics and styles of fluid-driven fracture is quite limited, our understanding of this phenomenon relies on theoretical models that use fundamental physical principles and available field data to constrain the behavior of fluid-driven cracks at depth.; This thesis proposes new and more accurate ways of theoretical and experimental description of magma transport in self-induced fractures, or dikes. Dike propagation is a complex process that involves elastic and inelastic deformation of the host rocks, rock fracture, viscous flow of magma, heat transfer, and phase transitions (e.g., rock crystallization and fusion, volatile exolution etc.). We consider relationships between different physical processes associated with magma transport in dikes by solving appropriate boundary value problems of continuum mechanics and heat and mass transfer. The first chapter of this thesis revises existing interpretations of available experimental data bearing on the role of fracture resistance in the overall energy balance during dike propagation. It is shown for the first time that the experimental data indicate that the rock tensile fracture energy, which is not a material property at elevated confining pressures, may substantially increase under in-situ stress conditions. The second chapter concentrates on the interaction between magma flow, heat transfer and phase changes associated with dike emplacement, and discusses some important implications of our results for the generation of the Earth's crust at mid-ocean ridges. In particular, we find that the thermal arrest lengths of typical mid-ocean ridge dikes are of the order of the wavelength of crustal thickness variations and transform fault spacing along slow spreading ridges. This suggests that thermal controls on the crustal melt delivery system could be an important factor in modulating these variations. The third chapter deals with fluid-mechanical aspects of lateral dike propagation in volcanic rift zones. We demonstrate the existence of a feedback between viscous pressure losses during magma transport at depth and the along-strike surface topography of a rift zone. Our estimated values of the along-strike slopes resulting from such a feedback are in general agreement with observations in Hawaiian rift zones. The fourth chapter explores mechanisms of emplacement of giant dike swarms that might have played a role in splitting continents and producing mass extinctions. We reconcile field observations of chilled margins, low crustal contamination, and large dike thicknesses with the theoretically inferred turbulent mode of magma flow in such dikes.
机译:流体驱动的裂缝是在行星内部许多尺度上运作的基本地球物理现象。涉及通过自生裂缝进行流体运移的地质过程的一些例子包括:地幔中的熔体隔离,穿过岩石圈的岩浆上升,中海脊和火山“热点”处的地壳增生,地壳中变质和沉积流体的迁移总体而言,流体驱动(尤其是岩浆驱动)裂缝在上地幔的化学分化中起着重要作用。由于我们直接观察流体驱动裂缝的动力学和样式的能力非常有限,因此我们对这种现象的理解依赖于理论模型,该理论模型使用基本物理原理和可用的现场数据来约束深处流体驱动裂缝的行为。 。;本文提出了一种新的,更精确的方法,用于在自生裂缝或堤防中进行岩浆运移的理论和实验描述。堤防传播是一个复杂的过程,涉及主体岩石的弹性和非弹性变形,岩石破裂,岩浆的粘性流,热传递和相变(例如,岩石的结晶和聚变,挥发性溶出等)。我们通过解决连续力学和传热传质的适当边值问题,来考虑与堤防中的岩浆运输相关的不同物理过程之间的关系。本文的第一章对现有实验数据的现有解释进行了修订,该解释涉及在堤防传播过程中抗断裂性在整体能量平衡中的作用。首次表明,实验数据表明,岩石拉伸断裂能(在升高的围压下不是材料特性)可能会在原位应力条件下大幅增加。第二章着重于岩浆流动,传热和与堤防相关的相变之间的相互作用,并讨论了我们的研究结果对洋中脊地壳生成的一些重要意义。特别是,我们发现典型的中洋洋脊堤的热阻长度约为地壳厚度变化的波长,并沿着缓慢扩散的洋脊转换断层间距。这表明对地壳熔体输送系统的热控制可能是调节这些变化的重要因素。第三章讨论了在火山裂谷带中横向堤坝传播的流体力学方面。我们证明了在深处岩浆运输过程中的粘性压力损失与裂谷带的沿走向表面形貌之间存在反馈。我们从这样的反馈中得出的沿走向坡度的估计值与夏威夷裂谷带的观测值总体上是一致的。第四章探讨了可能在分裂大陆和造成大灭绝中起作用的巨型堤防群的进驻机制。我们将冷却边缘,低地壳污染和大堤厚度与实测值与理论推论得出的此类堤坝中的岩浆湍流模式相协调。

著录项

  • 作者

    Fialko, Yuri Alex.;

  • 作者单位

    Princeton University.;

  • 授予单位 Princeton University.;
  • 学科 Geophysics.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号