首页> 外文学位 >Kinetics of melt-rock reaction with applications to melt transport in the Earth's mantle and the lunar crust.
【24h】

Kinetics of melt-rock reaction with applications to melt transport in the Earth's mantle and the lunar crust.

机译:熔岩反应动力学及其在地幔和月球地壳中的熔体传输应用。

获取原文
获取原文并翻译 | 示例

摘要

Melt migration in the Earth's mantle and the Lunar crust were explored through experiments, field measurements and numerical modeling. A series of harzburgite and lherzolite dissolution experiments were conducted in basaltic melts. The experiments result in the formation distinct mineralogical zones including dunite from harzburgite, and dunite and harzburgite from lherzolite, each separated by a sharp interface. Composition profiles are observed in both melt and coexisting solids extending across the entire sequence of mineralogical zones. The growth of the mineralogical zones and the composition profiles are rate limited by diffusion in the melt. Building on the experimental results a field study was conducted at the Josephine ophiolite in southern Oregon and the Trinity ophiolite in northern California. At each ophiolite a detailed transect was collected across a dunite body and the host peridotite lithologies. Both transects revealed composition profiles qualitatively similar to those resulting from the harzburgite and lherzolite dissolution experiments. Simple 2-D numerical simulations were used to explore the effects of melt flow on the composition of dunite and host peridotite lithologies. The Josephine profile is consistent with simulations including a component of melt flow from the harzburgite into the dunite. In contrast, the Trinity profile is consistent with simulations including a component of melt flow from the dunite into the surrounding lithologies. The techniques developed and used to explore melt flow in the Earth's mantle also apply to the other terrestrial planets. A series of anorthosite dissolution experiments were conducted to explore the interaction of the lunar picritic magmas and the anorthite rich lunar crust as a function of temperature. Relative to terrestrial studies, the anorthosite dissolution rates are fast. Experiments dissolving anorthosite into an olivine saturated picritic magma result in both a spinel + melt region next to the anorthosite and a crystal free region from the olivine saturated melt. Part of the chemical variability of the lunar picritic magmas can be explained by anorthosite dissolution.
机译:通过实验,实地测量和数值模拟,探索了地幔和月球地壳中的熔体迁移。在玄武质熔体中进行了一系列的harzburgite和lherzolite溶解实验。实验结果形成了独特的矿物学带,包括来自Harzburgite的榴辉石,来自Lhzolite的榴辉岩和Harzburgite,每个区域都被一个尖锐的界面隔开。在熔体和共存的固体中,沿着矿物学区域的整个序列都观察到了成分分布。矿物学区的生长和成分分布受到熔体扩散的限制。根据实验结果,在俄勒冈州南部的约瑟芬蛇绿岩和加利福尼亚州北部的三位一体蛇绿岩进行了现场研究。在每块蛇绿岩上,均收集了一个横跨榴辉岩体和宿主橄榄岩岩性的详细样带。这两个样线都显示出与哈茨伯格石和锂铁矿溶解实验产生的定性相似的定性曲线。使用简单的二维数值模拟来探讨熔体流动对榴辉岩和主体橄榄岩岩性组成的影响。约瑟芬的剖面与模拟相吻合,其中包括从哈兹伯格岩到辉光岩的熔体流动成分。相反,Trinity剖面与模拟结果一致,其中包括从Dunite到周围岩性的熔体流动成分。开发并用于探索地幔中熔体流动的技术也适用于其他地球行星。进行了一系列的钙钛矿溶解实验,以探讨月饼野餐岩浆与富钙长石月壳的相互作用与温度的关系。相对于陆地研究,钙铁矿的溶解速度很快。将钙硅钙石溶解到橄榄石饱和岩质岩浆中的实验会导致尖晶石+熔体区域靠近钙钙石,并且形成了不含橄榄石饱和熔体的无晶体区域。月球轻度岩浆的部分化学变异性可以通过原位溶解来解释。

著录项

  • 作者

    Morgan, Zachary Thomas.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Geology.; Geochemistry.
  • 学位 Ph.D.
  • 年度 2006
  • 页码 347 p.
  • 总页数 347
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号