首页> 外文学位 >A chromosome-repairing genetic algorithm (CRGA) capable of finding exact solutions.
【24h】

A chromosome-repairing genetic algorithm (CRGA) capable of finding exact solutions.

机译:能够找到精确解的染色体修复遗传算法(CRGA)。

获取原文
获取原文并翻译 | 示例

摘要

A Chromosome Repairing Genetic Algorithm (CRGA) that finds exact solutions is developed and discussed. Unlike traditional Genetic Algorithms, this algorithm does not merely find an approximate answer, but instead finds exact answers for the case of discrete search spaces. It is a predominately parallel algorithm, and exhibits a speed-to-convergence advantage relative to a purely random search. It also features a serial form of niching for overcoming genetic drift, thereby reducing the computational burden on the host computer as compared to maintaining two separate, yet simultaneous, populations.; Fundamentally, the CRGA works by repairing chromosomes found at the point of genetic drift of the chromosome population through using interpolation. It is demonstrated against the Knight's Tour problem, which consists of placing a knight on a chessboard, and traveling to each and every square but once, using the rules of chess. The choice of interpolation used for this particular problem is Euler Interpolation, by which a damaged chromosome, representing a near-solution, is repaired and transformed into an exact solution.; The CRGA overcomes a typical limiting performance for GAs in not finding an exact solution in a reasonable amount of time, even after producing good solutions relatively quickly. It therefore extends present GA capabilities. It provides a robust and powerful replacement for both traditional GAs and Simulated Annealing Algorithms (SAAs). The basic concepts also are applicable to Genetic Programming (GP) problems.; This dissertation also establishes the necessity of genetic mutations (birth defects) for any mortal species, simulated or otherwise, for maintaining genetic diversity.
机译:发现并讨论了找到确切解决方案的染色体修复遗传算法(CRGA)。与传统的遗传算法不同,此算法不仅可以找到近似答案,还可以为离散搜索空间找到精确答案。它是一种主要的并行算法,相对于纯随机搜索,它具有收敛速度方面的优势。它还具有一系列的小生境,可以克服遗传漂移,从而与维持两个单独但同时的种群相比,减轻了主机的计算负担。从根本上说,CRGA通过使用插值来修复在染色体群体遗传漂移时发现的染色体。它针对骑士巡回赛问题进行了演示,该问题包括将骑士放置在棋盘上,并使用象棋规则前往每个广场,但一次。选择用于该特定问题的插值方法是Euler插值法,通过该方法可以修复代表近解的受损染色体,并将其转化为精确解。 CRGA克服了GA的典型局限性,即使在相对快速地生成好的解决方案之后,也无法在合理的时间内找到精确的解决方案。因此,它扩展了现有的GA功能。它为传统的GA和模拟退火算法(SAA)提供了强大而强大的替代产品。基本概念也适用于遗传编程(GP)问题。本文还建立了维持或保持遗传多样性的任何模拟或其他方式的凡人物种遗传突变(出生缺陷)的必要性。

著录项

  • 作者

    Bastin, Gary Lee.;

  • 作者单位

    Florida Institute of Technology.;

  • 授予单位 Florida Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.; Biology Genetics.; Philosophy.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;遗传学;哲学理论;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号