首页> 外文学位 >Thermomechanical characterization of heat-activated coupling for advanced composite piping systems.
【24h】

Thermomechanical characterization of heat-activated coupling for advanced composite piping systems.

机译:用于高级复合管道系统的热激活联轴器的热机械特性。

获取原文
获取原文并翻译 | 示例

摘要

A new technology for joining advanced composite piping systems, based on heat-activated coupling (HAC) of a thermosetting pre-impregnated (prepreg) fiber reinforced material has been advanced. The successful design of a heat-activated coupled joint depends on achieving the following requirements: (1) uniformly cured prepreg bonded to the surfaces of coupled pipe; and (2) minimal residual thermal stress as a result of the curing process.;In order to address the above concerns, thermal characterization of the uncured and cured prepreg used was undertaken in order to establish prerequisite chemical kinetics parameters and material property data required for the curing process models and thermal stress analysis. The validity of the developed curing process models was verified by use of an experimental test section designed for that purpose and experimentation to produce benchmark curing process temperature data.;Fundamental heat transfer process models were developed to simulate the curing process used in HAC. The model developed takes into account the nonlinear heat conduction arising from some temperature dependent material properties, chemical kinetics and moving thermal boundary of the prepreg's organic matrix before gelation. A solution methodology derived using finite difference methodology was applied to the resulting one- and two-dimensional parabolic boundary value problems to obtain numerical solutions.;Curing residual and in-service thermal stress analysis were also conducted on the coupled pipes using a commercial finite element analysis (FEA) code and equivalent material property data. The curing residual stress FEA model was validated by benchmark data from experimentation designed to ascertained FEA model results.;FORTRAN programs were written based on the finite difference numerical formulation and used to generate numerical simulation results of the curing process of HAC. Results obtained from the numerical simulation models compare favorably with the data from experimentation. The developed thermal models were incorporated into a curing process parametric study on composite-to-composite HAC couplings and used to establish desired curing schedules to achieve uniform cure and minimal thermal stress during the process.
机译:基于热固性预浸渍(预浸料)纤维增强材料的热激活耦合(HAC),一种用于连接高级复合管道系统的新技术已经得到了发展。热激活连接接头的成功设计取决于达到以下要求:(1)均匀固化的预浸料粘结到连接管的表面; (2)由于固化过程而产生的最小残余热应力。为了解决上述问题,对未固化和固化的预浸料进行了热表征,以建立必要的化学动力学参数和材料性能数据。固化过程模型和热应力分析。通过使用为此目的而设计的实验测试部分并进行实验以产生基准固化过程温度数据,验证了开发的固化过程模型的有效性。开发了基本的传热过程模型来模拟HAC中使用的固化过程。开发的模型考虑了由某些温度相关的材料特性,化学动力学和胶凝前预浸料的有机基体的移动热边界引起的非线性热传导。将使用有限差分法导出的求解方法应用于所得的一维和二维抛物线型边值问题以获得数值解。;还使用商用有限元对耦合管道进行了固化残余和在役热应力分析分析(FEA)代码和等效的材料属性数据。固化残余应力有限元分析模型通过实验确定的基准数据进行验证,以确定有限元分析模型的结果。基于有限差分数值公式编写FORTRAN程序,并用于生成HAC固化过程的数值模拟结果。从数值模拟模型获得的结果与实验数据相比具有优势。所开发的热模型被纳入到复合材料到复合材料HAC联轴器的固化工艺参数研究中,并用于建立所需的固化时间表,以在过程中实现均匀固化和最小的热应力。

著录项

  • 作者

    Mensah, Patrick Fitzgerald.;

  • 作者单位

    Louisiana State University and Agricultural & Mechanical College.;

  • 授予单位 Louisiana State University and Agricultural & Mechanical College.;
  • 学科 Mechanical engineering.;Chemical engineering.;Mathematics.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 132 p.
  • 总页数 132
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号