首页> 外文学位 >The physical modeling of soils containing oversized particles.
【24h】

The physical modeling of soils containing oversized particles.

机译:包含超大颗粒的土壤的物理模型。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation details research into the shear strength and stiffness of dry, granular soils. The shear strength and stiffness properties of large, crushed granular soils are examined by use of the parallel gradation model. The issue of a representative volume and scale effects in typical experimental apparatus is examined. The second focus was research on the possibility of modeling broadly graded soils using a matrix density model. In this physical model, the "matrix" (the material left after oversized particles are removed) is tested at the same density that it had in situ, when the oversized particles were still in place. This research also sheds interesting light on the influence of inclusions on the shear strength and deformability of an otherwise uniform soil matrix. Klosky (1997) referred to these geotechnical materials as composite soils.; Use of a parallel gradation of crushed granular soil made from the same source as the prototype material to predict the shear strength of oversized crushed granular materials has been shown to be successful. Use of the matrix density model to predict the shear strength of broadly graded soils has also been shown to be successful, provided that the oversized particles are from a natural source and comprise less than 50% of a full oversized skeleton. Predictions of elastic properties using either model were poor, with the exception of the E{dollar}sb{lcub}50{rcub}{dollar} secant modulus.; Numerical modeling of a composite soil shows that it is possible to predict the peak strength trends of soils with inclusions using a finite element approach. Additionally, the numerical model gives insight into the mechanisms that govern the behavior of the peak shear strength trends of composite soils.
机译:本文详细研究了干燥粒状土的抗剪强度和刚度。通过使用平行渐变模型,检查了破碎的大颗粒土壤的抗剪强度和刚度特性。研究了典型实验装置中代表性的体积和比例效应的问题。第二个重点是研究使用矩阵密度模型对宽等级土壤进行建模的可能性。在此物理模型中,“矩阵”(去除超大尺寸颗粒后留下的材料)以与原位相同的密度(当超大颗粒仍在原位时)进行测试。这项研究还为夹杂物对原本均匀的土壤基质的剪切强度和可变形性的影响提供了有趣的启示。 Klosky(1997)将这些岩土材料称为复合土壤。已经证明,使用与原物料相同的来源制成的平行碎粒土壤来预测超大型碎粒材料的剪切强度是成功的。如果超大颗粒来自自然资源且占整个超大骨架的比例不到50%,则使用矩阵密度模型预测宽梯度土的抗剪强度也已证明是成功的。除E {dollar} sb {lcub} 50 {rcub} {dollar}割线模量外,使用这两种模型的弹性性能预测均较差。复合土壤的数值模拟表明,可以使用有限元方法预测包含夹杂物的土壤的峰值强度趋势。此外,数值模型还可以深入了解控制复合土峰值抗剪强度趋势行为的机理。

著录项

  • 作者

    Jernigan, Russell Lewis.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Engineering Civil.; Geotechnology.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 501 p.
  • 总页数 501
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号