首页> 外文学位 >Parametric Cavity Quantum Electrodynamics With Superconducting Circuits and Large Cavities.
【24h】

Parametric Cavity Quantum Electrodynamics With Superconducting Circuits and Large Cavities.

机译:具有超导电路和大腔体的参量腔量子电动力学。

获取原文
获取原文并翻译 | 示例

摘要

The research reported here details experimental progress toward future superconductor-based quantum computing technologies. Specifically, we present techniques for moving quantum information between various cavity resonators --- spatially as well as between frequencies. Rather than using traditional resonant coupling though, we induce non-resonant coupling through parametric frequency conversion. This technology is mediated by chip-based, micro-fabricated, Josephson Junction circuits.;Parametric processes have the advantage over traditional coupling by allowing the constituents of the system --- for example: cavity modes or qubits --- to remain fixed in frequency, tuned to their optimal operation frequency, thereby avoiding unwanted resonant interactions. As the number of constituents grows --- as quantum computing architectures expand to more and more bits --- these techniques will become necessary to optimize performance.;Outside of the focus on quantum computation, these techniques have wide application for materials research, quantum optics, and extending traditionally optical-frequency experiments to microwave-frequencies. To that end, we demonstrate a hybrid quantum technology which expands the toolbox of superconducting quantum information to a new system, namely sapphire whispering gallery mode resonators. These resonators have been studied in the optical frequency domain, but here we demonstrate their usefulness at microwave frequencies.;All of the experiments in this dissertation should be considered proof-of-principle demonstrations of a future technology. Thus, we note when and where improvements for future devices will be necessary.
机译:此处报道的研究详细介绍了未来基于超导体的量子计算技术的实验进展。具体来说,我们提出了在各种空腔谐振器之间(在空间上以及在频率之间)移动量子信息的技术。但是,我们没有使用传统的共振耦合,而是通过参数频率转换来诱导非共振耦合。该技术由基于芯片的微型制造的约瑟夫逊结电路介导。参数化工艺比传统耦合具有优势,它允许系统的组成部分(例如:腔模或量子位)保持固定在频率调整到最佳工作频率,从而避免了不必要的共振相互作用。随着组成部分数量的增加-随着量子计算体系结构扩展到越来越多的位-这些技术将成为优化性能的必要条件;除了对量子计算的关注之外,这些技术还广泛用于材料研究,量子力学光学,并将传统的光频实验扩展到微波频率。为此,我们展示了一种混合量子技术,该技术将超导量子信息的工具箱扩展到了一个新系统,即蓝宝石耳语画廊模式谐振器。这些谐振器已经在光频域中进行了研究,但是在这里我们证明了它们在微波频率下的有用性。本文中的所有实验都应被视为未来技术的原理证明。因此,我们注意到在何时何地需要对未来设备进行改进。

著录项

  • 作者

    Sirois, Adam J.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics.;Computer engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号