首页> 外文学位 >Coordinated neuroprosthetic control of wrist flexion/extension and hand grasp.
【24h】

Coordinated neuroprosthetic control of wrist flexion/extension and hand grasp.

机译:腕关节屈伸和手握的协调神经修复控制。

获取原文
获取原文并翻译 | 示例

摘要

Functional neuromuscular stimulation (FNS) can restore hand function to individuals with a spinal cord injury at the C5/C6 level. However, integrated control of hand grasp and wrist movement in a FNS hand grasp neuroprosthesis is compromised due to: (1) electrical stimulation of the hand extrinsic muscles (i.e. grasp activation), (2) arm orientation in the gravitational field, (3) time dependent muscle properties, and (4) load in hand. Adequate voluntary (via residual control or muscle tendon transfer of brachioradialis to extensor carpi radialis brevis) and/or stimulated wrist extension moments will be able to counterbalance these disturbances, thus making integrated hand and wrist control feasible. To evaluate the different wrist extension moments, the net wrist moment was measured in seven neuroprosthesis users during grasp activation combined with voluntary and/or stimulated wrist extension. Transferring the tendon of the paralyzed extensor carpi ulnaris to the extensor carpi radialis brevis increased isolated stimulated wrist extension, while combined voluntary and stimulated wrist extension was the most effective in reducing wrist flexion generated by grasp activation.;With the knowledge that adequate wrist extension can be incorporated in the hand grasp neuroprosthesis, a feedforward controller was designed to provide individuals with independent control of hand grasp and wrist movement. The feedforward controller was designed using artificial neural networks that modeled the relationship between muscle stimulation and the corresponding changes in grasp and wrist posture. In simulation studies, the controller was successful in generating the desired grasp and wrist parameters with minimum error. In clinical trials on one neuroprosthesis user, offset errors between the desired and actual grasp force and wrist angle were present (due to arm orientation and time varying muscle properties), however, the desired hand and wrist coordination pattern was produced. Gravitational disturbances at the hand and wrist were corrected by adding an arm orientation input to the control scheme (demonstrated in simulations), or by voluntary wrist extension (demonstrated in clinical experiments). Based on these results, integrated hand grasp and wrist control will likely be possible in the neuroprosthesis, resulting in a more natural and functional grasp for the neuroprosthesis user.
机译:功能性神经肌肉刺激(FNS)可使C5 / C6水平的脊髓损伤患者恢复手部功能。但是,由于以下原因,FNS手持神经假体的手抓和腕部运动的综合控制受到损害:(1)对手外在肌肉的电刺激(即抓握激活);(2)在重力场中的手臂方向;(3)随时间变化的肌肉特性,以及(4)手中的负荷。足够的自愿(通过残余控制或通过腕radi肌向短伸腕腕肌腱的肌腱转移)和/或刺激的手腕伸展力矩将能够抵消这些干扰,从而使手和手腕的综合控制成为可能。为了评估不同的腕部伸展力矩,在抓握激活期间结合自愿和/或刺激的腕部伸展,对七个神经假体使用者测量了净腕部力矩。将瘫痪的腕腕腕伸肌腱转移到radial肌腕腕短肌上,增加了孤立的受刺激腕部伸展,而自愿和受激腕部伸展相结合是最有效的减少握力激活产生的腕部屈曲的方法;将前馈控制器集成到手握神经假体中后,它可以为个人提供对手握和腕部运动的独立控制。前馈控制器是使用人工神经网络设计的,该模型对肌肉刺激与抓地力和腕部姿势的相应变化之间的关系进行建模。在仿真研究中,控制器成功地以最小的误差生成了所需的抓地力和手腕参数。在一个神经假体使用者的临床试验中,由于手臂的方向和时变的肌肉特性,在期望的和实际的抓握力以及腕部角度之间存在偏移误差,但是,却产生了期望的手和腕部协调模式。通过在控制方案中添加手臂方向输入(在模拟中演示)或通过自愿的手腕伸展(在临床实验中演示)来纠正手和腕上的重力干扰。基于这些结果,在神经假体中可能有可能实现综合的手握和腕部控制,从而为神经假体使用者提供更自然和功能上的抓握。

著录项

  • 作者

    Adamczyk, Margaret Marie.;

  • 作者单位

    Case Western Reserve University.;

  • 授予单位 Case Western Reserve University.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 118 p.
  • 总页数 118
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号