首页> 外文学位 >Characterization of cell growth and fluid flow distributions in hollow-fiber bioreactors using magnetic resonance micro-imaging and magnetic resonance spectroscopy.
【24h】

Characterization of cell growth and fluid flow distributions in hollow-fiber bioreactors using magnetic resonance micro-imaging and magnetic resonance spectroscopy.

机译:中空纤维生物反应器中的细胞生长和流体流动分布的表征使用磁共振微成像和磁共振波谱。

获取原文
获取原文并翻译 | 示例

摘要

Large-scale Mammalian cell culture has received considerable attention in recent years owing to the demand for such biological products as monoclonal antibodies, hormones, vaccines, and as a result of bioartificial organ development. Hollow-fiber bioreactors (HFBR) are an important and widely used technology within these and other areas of biomedicine. The nature of HFBR's is that the cell culture growing within in subject to inhomogeneous concentrations of nutrients such as oxygen, glucose, high-molecular growth factors. Moreover, the environment experienced by the cells is thought to vary considerably in response to different modes of bioreactor operation. Optimization of these devices requires a non-invasive method of monitoring physical parameters such as fluid flow distributions existing within the bioreactor and the physiological response of the cells.; In this work ultra-high resolution NMR velocity imaging was used to map the axial fluid flow profiles in the extracapillary space (ECS) of a commercial hollow-fiber bioreactor. The results showed significant non-uniformity in the axial flow. The axial velocity distributions computed from the NMR data showed good correspondence with velocity distributions that were generated from a simple model that considers the ECS as an assemblage of tubes with distributed radii.; Experiments performed with hybridoma cell cultures showed that the non-uniformity in the ECS flow is a primary factor in determining the initial distribution of cells within the bioreactor following inoculation. Moreover, high-resolution (13 {dollar}mu{dollar}m in plane) diffusion weighted imaging showed that the non-uniform cell distribution could result in a significant redistribution of the hollow-fibers. Quantitative diffusion coefficient and T{dollar}sb2{dollar} maps showed that cell growth is probably diffusion limited and therefore optimal performance requires enhanced transmembrane mass transport.; The optimization of cryopreservation protocols for the long-term storage of native and engineered tissue is an important problem in biomedical engineering. The potential for using hollow-fiber bioreactors as a model system for such studies was investigated. It was demonstrated that cell volume changes resulting from exposure to dimethyl sulfoxide (a cryopreservation agent) could be monitored using a hollow-fiber bioreactor. In addition possible metabolic changes are discussed.
机译:近年来,由于对诸如单克隆抗体,激素,疫苗等生物产品的需求以及生物人工器官的发展,大规模的哺乳动物细胞培养受到了广泛的关注。中空纤维生物反应器(HFBR)是生物医学在这些领域和其他领域中的一项重要且广泛使用的技术。 HFBR的本质是,细胞内的细胞培养物会受到营养素(例如氧气,葡萄糖,高分子生长因子)的不均匀浓度的影响。此外,认为细胞所经历的环境响应于生物反应器操作的不同模式而有很大变化。这些设备的优化需要一种非侵入性的方法来监视物理参数,例如生物反应器内存在的流体流量分布以及细胞的生理反应。在这项工作中,使用超高分辨率NMR速度成像来绘制商用中空纤维生物反应器的毛细管外空间(ECS)中的轴向流体流动曲线。结果表明轴向流明显不均匀。从NMR数据计算得到的轴向速度分布与由简单模型生成的速度分布具有良好的对应关系,该模型将ECS视为具有分布半径的管的集合。用杂交瘤细胞培养进行的实验表明,ECS流动的不均匀性是决定接种后生物反应器内细胞初始分布的主要因素。此外,高分辨率(在平面上为13μm)扩散加权成像显示,不均匀的细胞分布可能会导致中空纤维的大量重新分布。定量扩散系数和T {dollar} sb2 {dollar}图谱表明,细胞生长可能受到扩散限制,因此,最佳性能需要增强跨膜质量传输。长期保存天然和工程组织的冷冻保存方案的优化是生物医学工程中的重要问题。研究了使用中空纤维生物反应器作为此类研究模型系统的潜力。结果表明,使用中空纤维生物反应器可以监测由于暴露于二甲基亚砜(冷冻保存剂)而引起的细胞体积变化。另外,讨论了可能的代谢变化。

著录项

  • 作者

    Conroy, Mark James.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Biophysics General.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物物理学;
  • 关键词

  • 入库时间 2022-08-17 11:48:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号