首页> 外文学位 >Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications.
【24h】

Experimental/analytical approaches to modeling, calibrating and optimizing shaking table dynamics for structural dynamic applications.

机译:为结构动力应用建模,校准和优化振动台动力学的实验/分析方法。

获取原文
获取原文并翻译 | 示例

摘要

This thesis presents an Experimental/Analytical approach to modeling and calibrating shaking tables for structural dynamic applications. This approach was successfully applied to the shaking table recently built in the structural laboratory of the Civil Engineering Department at Rice University.; This shaking table is capable of reproducing model earthquake ground motions with a peak acceleration of 6 g's, a peak velocity of 40 inches per second, and a peak displacement of 3 inches, for a maximum payload of 1500 pounds. It has a frequency bandwidth of approximately 70 Hz and is designed to test structural specimens up to 1/5 scale. The rail/table system is mounted on a reaction mass of about 70,000 pounds consisting of three 12 ft x 12 ft x 1 ft reinforced concrete slabs, post-tensioned together and connected to the strong laboratory floor. The slip table is driven by a hydraulic actuator governed by a 407 MTS controller which employs a proportional-integral-derivative-feedforward-differential pressure algorithm to control the actuator displacement. Feedback signals are provided by two LVDT's (monitoring the slip table relative displacement and the servovalve main stage spool position) and by one differential pressure transducer (monitoring the actuator force).; The dynamic actuator-foundation-specimen system is modeled and analyzed by combining linear control theory and linear structural dynamics. The analytical model developed accounts for the effects of actuator oil compressibility, oil leakage in the actuator, time delay in the response of the servovalve spool to a given electrical signal, foundation flexibility, and dynamic characteristics of multi-degree-of-freedom specimens.; In order to study the actual dynamic behavior of the shaking table, the transfer function between target and actual table accelerations were identified using experimental results and spectral estimation techniques. The power spectral density of the system input and the cross power spectral density of the table input and output were estimated using the Bartlett's spectral estimation method.; The experimentally-estimated table acceleration transfer functions obtained for different working conditions are correlated with their analytical counterparts. As a result of this comprehensive correlation study, a thorough understanding of the shaking table dynamics and its sensitivities to control and payload parameters is obtained. Moreover, the correlation study leads to a calibrated analytical model of the shaking table of high predictive ability. It is concluded that, in its present conditions, the Rice shaking table is able to reproduce, with a high degree of accuracy, model earthquake accelerations time histories in the frequency bandwidth from 0 to 75 Hz. Furthermore, the exhaustive analysis performed indicates that the table transfer function is not significantly affected by the presence of a large (in terms of weight) payload with a fundamental frequency up to 20 Hz. Payloads having a higher fundamental frequency do affect significantly the shaking table performance and require a modification of the table control gain setting that can be easily obtained using the predictive analytical model of the shaking table.; The complete description of a structural dynamic experiment performed using the Rice shaking table facility is also reported herein. The object of this experimentation was twofold: (1) to verify the testing capability of the shaking table and, (2) to experimentally validate a simplified theory developed by the author, which predicts the maximum rotational response developed by seismic isolated building structures characterized by non-coincident centers of mass and rigidity, when subjected to strong earthquake ground motions.
机译:本文提出了一种用于结构动力应用的振动台建模和校准的实验/分析方法。该方法已成功应用于最近在莱斯大学土木工程系结构实验室建造的振动台。该振动台能够再现模型地震地震动,最大加速度为6 g,峰值速度为每秒40英寸,峰值位移为3英寸,最大有效载荷为1500磅。它的频率带宽约为70 Hz,旨在测试高达1/5比例的结构样本。导轨/工作台系统安装在约70,000磅的反应物料上,该物料由三块12 ft x 12 ft x 1 ft的钢筋混凝土板组成,后张紧在一起并连接至坚固的实验室地板。滑动台由液压执行机构驱动,该执行机构由407 MTS控制器控制,该控制器采用比例积分微分前馈差压算法来控制执行机构的位移。反馈信号由两个LVDT(监视滑台的相对位移和伺服阀主级阀芯位置)和一个差压传感器(监视执行器力)提供。通过将线性控制理论和线性结构动力学相结合,对动态执行器-基础-样本系统进行建模和分析。开发的分析模型考虑了执行器油的可压缩性,执行器中的油泄漏,伺服阀阀芯对给定电信号的响应中的时间延迟,基础灵活性以及多自由度样品的动态特性的影响。 ;为了研究振动台的实际动态行为,使用实验结果和频谱估计技术确定了目标加速度与实际加速度之间的传递函数。系统输入的功率谱密度和表输入和输出的交叉功率谱密度使用Bartlett的谱估计方法进行估计。在不同工作条件下获得的实验估算表加速度传递函数与它们的分析对应关系相关。这项全面的相关研究的结果是,获得了对振动台动力学及其对控制和有效载荷参数的敏感性的透彻了解。此外,相关性研究导致了具有高预测能力的振动台的校准分析模型。得出的结论是,在当前条件下,莱斯振动台能够高精度地再现0到75 Hz频带内地震加速度的时间历史模型。此外,进行的详尽分析表明,表传递函数不受具有高达20 Hz的基本频率的较大(按重量计)有效载荷的影响。具有较高基本频率的有效载荷确实会显着影响振动台的性能,并且需要对振动台控制增益设置进行修改,而使用振动台的预测分析模型可以轻松地获得该设置。本文还报道了使用莱斯振动台设备进行的结构动力学实验的完整描述。该实验的目的是双重的:(1)验证振动台的测试能力,(2)通过实验验证作者开发的简化理论,该理论预测了以地震为特征的隔震建筑结构产生的最大旋转响应。承受强烈地震地震动时,非重合的质心和刚度中心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号