首页> 外文学位 >Design and Performance Improvement of AC Machines Sharing a Common Stator.
【24h】

Design and Performance Improvement of AC Machines Sharing a Common Stator.

机译:共用定子的交流电机的设计和性能改进。

获取原文
获取原文并翻译 | 示例

摘要

With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design.;Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be discussed in this dissertation. In the design stage, an optimization method based on orthogonal experimental design will be introduced. Besides, a universal current profiling technique is proposed to minimize the torque pulsation along with the stator copper losses in modular interior permanent magnet motors. Instead of sinusoidal current waveforms, this algorithm will calculate the proper currents which can minimize the torque pulsation. Finite element analysis and Matlab programing will be used to develop this optimal current profiling algorithm.;Permanent magnet machines are becoming more attractive in some modern traction applications, such as traction motors and generators for an electrified vehicle. The operating speed or the load condition in these applications may be changing all the time. Compared to electric machines used to operate at a constant speed and constant load, better control performance is required. In this dissertation, a novel model reference adaptive control (MRAC) used on five-phase interior permanent magnet motor drives is presented. The primary controller is designed based on artificial neural network (ANN) to simulate the nonlinear characteristics of the system without knowledge of accurate motor model or parameters. The proposed motor drive decouples the torque and flux components of five-phase IPM motors by applying a multiple reference frame transformation. Therefore, the motor can be easily driven below the rated speed with the maximum torque per ampere (MTPA) operation or above the rated speed with the flux weakening operation. The ANN based primary controller consists of a radial basis function (RBF) network which is trained on-line to adapt system uncertainties. The complete IPM motor drive is simulated in Matlab/Simulink environment and implemented experimentally utilizing dSPACE DS1104 DSP board on a five-phase prototype IPM motor. The proposed model reference adaptive control method has been applied on the commons stator SynRM and IPM machine as well.
机译:随着在各种工业应用中对电动机的需求不断增加,特别是电动车辆(电动汽车,更多的电动飞机以及未来的电动船和潜艇),同步磁阻电机(SynRM)和内部永磁体(IPM)电机都被认为是很好的电机高性能变速应用的候选人。开发可用于SynRM和IPM电动机的单个定子设计是降低制造和维护成本的好方法。 SynRM可以用作许多电力驱动应用的低成本解决方案,而IPM机器可以在功率密度至关重要的情况下使用,也可以用作发电机来满足船上对电力日益增长的需求。在这项研究中,SynRM和IPM电机被设计为共享相同的定子结构。原型电动机是借助有限元分析(FEA)设计的。 FEA比较了具有不同定子槽和转子极数的机器性能。基于该原型设计的比较结果,选择了18槽4极结构。有时,转矩脉动是永磁同步电机的主要缺点。扭矩脉动有多种来源,例如反电动势失真,电感变化以及由于存在永久磁铁而产生的齿槽转矩。为了减少永磁电机中的转矩脉动,可以将所有工作分为两类:一类是从设计阶段开始,就可以借助有限元分析来优化永磁电机的结构。减少转矩脉动的另一类是在制造永磁电机之后或由于其他原因而无法更改电机结构之后。可以控制馈入永磁电机的电流以遵循一定的曲线,这将使电机生成更平滑的转矩波形。本文将讨论两种类别的转矩脉动减小方法。在设计阶段,将介绍一种基于正交实验设计的优化方法。此外,提出了一种通用电流分布技术,以将模块化内部永磁电动机中的转矩脉动以及定子铜损降至最低。代替正弦电流波形,此算法将计算可以使转矩脉动最小的适当电流。有限元分析和Matlab编程将用于开发这种最佳的电流分析算法。永磁电机在一些现代牵引应用中正变得越来越有吸引力,例如牵引车和电动车辆的发电机。这些应用中的运行速度或负载条件可能一直在变化。与用于以恒定速度和恒定负载运行的电机相比,需要更好的控制性能。本文提出了一种用于五相内部永磁电动机驱动器的新型模型参考自适应控制(MRAC)。主控制器基于人工神经网络(ANN)设计,可在不了解准确的电机模型或参数的情况下模拟系统的非线性特性。所提出的电动机驱动器通过应用多参考框架变换来解耦五相IPM电动机的转矩和磁通分量。因此,在最大额定电流每安培(MTPA)的操作下,可以很容易地在额定速度以下运行电动机,而在磁通减弱操作下,可以很容易地在额定速度以上来驱动电动机。基于ANN的主控制器由一个径向基函数(RBF)网络组成,该网络经过在线训练以适应系统不确定性。完整的IPM电机驱动器在Matlab / Simulink环境中进行了仿真,并通过dSPACE DS1104 DSP板在五相IPM原型电机上进行了实验性实现。所提出的模型参考自适应控制方法也已应用于普通定子SynRM和IPM电机。

著录项

  • 作者

    Guo, Lusu.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Electrical engineering.;Mechanics.;Electromagnetics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 157 p.
  • 总页数 157
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号