首页> 外文学位 >Periodic orbit spectroscopy: Breaching the impenetrable fortress.
【24h】

Periodic orbit spectroscopy: Breaching the impenetrable fortress.

机译:周期性轨道光谱:突破了坚不可摧的堡垒。

获取原文
获取原文并翻译 | 示例

摘要

The study of complex chaotic systems has long been hampered by the visual nature or dimensional limits of the historic methodologies. To overcome this boundary a method is developed which is applicable to any chaotic Hamiltonian system, even those of high dimensionality. This method relies on the propagation of the classical analog to the quantum mechanical wavefunction. A dipole-dipole autocorrelation function is calculated as the wavepacket propagates. The Fourier transform of the resulting curve is the classical equivalent to the ionization spectrum, a quantum mechanical observable. In addition the stable and unstable periodic orbits which dominate the structure in the spectra are identified.; This method is applied to several physical systems starting with the x2y2 potential where a stable orbit is readily found which eluded scientists for decades. The problem of the hydrogen atom in external electric and magnetic fields in both parallel and crossed orientations is considered. Here numerous results are presented which explain the dominant structures in the spectra while providing an understanding of the transitions undergone as the field strengths, and wavepacket energies are varied. The last application is to the ozone molecule in the Frank-Condon region. These calculations explain the dominant experimental spectral structures while identifying the normal mode behaviors in this unusual region. Surprising increases in the average spectra, and thus the stability, as the energy of molecule is increased are also explained in terms of the semi-classical wavepacket motion.; This method can be utilized in systems ranging from KAM to complete ergodicity and from low dimension to very high. The resulting spectra contain nearly the complete classical contribution to the experimental spectra, thus allowing the detailed study of quantum signatures of classical chaos.
机译:长期以来,复杂混沌系统的研究一直受到历史方法学的视觉性质或尺寸限制的困扰。为了克服这个边界,开发了一种方法,该方法适用于任何混沌哈密顿系统,甚至是高维系统。该方法依赖于经典模拟到量子机械波函数的传播。随着波包的传播,计算出偶极-偶极自相关函数。所得曲线的傅立叶变换与电离谱是经典的等价物,可观察到量子力学。另外,确定了在光谱结构中占主导地位的稳定和不稳定周期轨道。此方法适用于从 x 2 y 2 势开始的几个物理系统,在这些系统中容易形成稳定轨道发现了数十年来科学家所无法企及的。考虑了在平行和交叉取向的外部电场和磁场中氢原子的问题。在这里给出了许多结果,这些结果解释了光谱中的主要结构,同时提供了对随着场强和波包能量变化而发生的跃迁的理解。最后的应用是在弗兰克-孔登地区的臭氧分子。这些计算解释了主要的实验光谱结构,同时确定了该异常区域中的正常模式行为。半分子波包运动也解释了随着分子能量的增加,平均光谱的惊人增加,以及由此带来的稳定性。此方法可用于从KAM到完整的遍历性以及从低尺寸到很高尺寸的系统。产生的光谱几乎包含了对实验光谱的全部经典贡献,因此可以详细研究经典混沌的量子特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号