首页> 外文学位 >Monitoring and analysis of ultra-precision machining processes using acoustic emission.
【24h】

Monitoring and analysis of ultra-precision machining processes using acoustic emission.

机译:使用声发射监测和分析超精密加工过程。

获取原文
获取原文并翻译 | 示例

摘要

Effective in-process monitoring techniques are essential to achieving high precision and productivity in ultra-precision machining. The potential of acoustic emission (AE) for monitoring the fine process parameters in micro-machining was investigated and novel AE signal representation and feature extraction techniques were developed.; Spectral analysis of acoustic emission signals from micro-cutting experiments showed that the specific AE RMS increases sharply as the uncut chip thickness approaches the tool edge radius, indicating redundant energy from plowing and sliding rather than chip formation. Experimental results also showed that acoustic emission is very sensitive to the process parameters in ultra-precision metal cutting, and is directly related to the material removal mechanisms. Any quantitative model of AE energy in micro-machining should account for the "edge-radius effect". A round-edge tool force model was investigated for deriving an AE energy model in ultra-precision metal cutting and verified with cutting force data.; An analysis of the link between wavelet analysis and the inherent Green's function transfer characteristics of AE wave propagation was done. Characteristic waveforms for brittle and ductile source events were summarized and used as the basis for identifying material removal mechanisms. By incorporating Green's function solutions with wavelet analysis, a representation scheme for AE signals was developed. Numerical simulations demonstrated the efficiency of the proposed scheme in extracting key features correlated to AE source events. The wavelet packet analysis is highly efficient in locating the onset of individual bursts, even with overlapping bursts.; The proposed signal representation scheme was then applied to the identification of cutting states for metal micro-cutting and the brittle-ductile transition for brittle materials. It was found that the time-frequency representations from wavelet analysis contain distinct patterns for identifying the material removal mechanisms, including burr formation. Parameters such as burst rate and entropy were proposed as quantifiers of the relative "brittleness" of the machining process.; Strategies for integrating wavelet analysis and neural networks were discussed. An intelligent in-process monitoring system for controlling cutting states and tool condition in micro-machining was developed. Wavelet analysis extracts the most descriptive features for neural network processing and enhances the performance of the networks.
机译:有效的过程内监控技术对于在超精密加工中实现高精度和高生产率至关重要。研究了声发射(AE)在微细加工中监测精细工艺参数的潜力,并开发了新颖的AE信号表示和特征提取技术。来自微切削实验的声发射信号的频谱分析表明,当未切削的切屑厚度接近刀具边缘半径时,特定的AE RMS急剧增加,表明来自犁削和滑动而不是切屑形成的多余能量。实验结果还表明,声发射对超精密金属切削过程中的工艺参数非常敏感,并且与材料去除机理直接相关。任何微加工中AE能量的定量模型都应考虑“边缘半径效应”。研究了一种圆刃工具力模型,以推导超精密金属切削中的AE能量模型,并用切削力数据进行了验证。对小波分析与AE波传播的固有Green函数传递特性之间的联系进行了分析。总结了脆性和延性源事件的特征波形,并将其用作识别材料去除机制的基础。通过将格林的函数解与小波分析相结合,开发了声发射信号的表示方案。数值模拟证明了该方案在提取与AE源事件相关的关键特征方面的效率。小波包分析在定位单个突发开始时非常有效,即使有重叠突发也是如此。所提出的信号表示方案随后被应用于金属微切削的切削状态的识别以及脆性材料的脆性-韧性转变。发现小波分析的时频表示包含用于识别材料去除机制(包括毛刺形成)的不同模式。诸如爆破率和熵之类的参数被提出作为加工过程的相对“脆性”的量度。讨论了将小波分析与神经网络集成的策略。开发了一种用于在微加工中控制切削状态和刀具状态的智能过程监控系统。小波分析为神经网络处理提取了最具描述性的功能,并增强了网络的性能。

著录项

  • 作者

    Chen, Xuemei.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Engineering Mechanical.; Artificial Intelligence.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;人工智能理论;
  • 关键词

  • 入库时间 2022-08-17 11:48:31

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号