首页> 外文学位 >Metabolic engineering approaches to biosynthesize terpenoids in Saccharomyces cerevisiae.
【24h】

Metabolic engineering approaches to biosynthesize terpenoids in Saccharomyces cerevisiae.

机译:在酿酒酵母中生物合成萜类化合物的代谢工程方法。

获取原文
获取原文并翻译 | 示例

摘要

Terpenoids are the largest class of natural products and are typically isolated from natural sources. However, heterologous expression of terpene synthases in microbial hosts such as E. coli or Saccharomyces cerevisiae has become an attractive alternative. S. cerevisiae has an intact sterol biosynthetic pathway, and many of the intermediates also serve as precursors for terpene synthases. Metabolic engineering efforts focus on optimizing product yields through increasing carbon flux through the desired pathway, removing competing enzymes, or altering enzymatic activity.;This work describes the metabolic engineering of S. cerevisiae to enhance terpene production by exploiting these three approaches. Diterpene synthases were expressed in a yeast strain previously reported to accumulate the diterpene precursor geranylgeranyl pyrophosphate (GGPP). The strains produced milligram amounts of GGPP hydrolysis products geranylgeraniol and geranyllinalool, as well as the GGPP cyclization products ent -copalyl pyrophosphate, ent-kaurene, and abietadiene. Because diterpene production is limited by transit peptides targeting diterpene synthases into plastids, protein expression was increased by co-expressing a chloroplast processing enzyme in two different diterpene-producing strains. The in vivo-generated mature diterpene synthases functioned more effectively, thereby increasing cyclization yield.;This thesis also describes a new method for controlling farnesyl pyrophosphate (FPP) hydrolysis product profile by adjusting media pH. Hydrolysis was found to be partially controlled by a phosphatase DPP1, however a majority of FPP hydrolysis is non-enzymatic. In a squalene synthase deletion strain, FPP accumulates and hydrolyzes readily to farnesol and nerolidol, and the ratios of these products are determined by the pH of the media.;Finally, a yeast strain was constructed to increase production of the 30-carbon triterpene precursors oxidosqualene (OS) and dioxidosqualene (DOS) by over-expressing the sterol biosynthesis rate-limiting enzyme 3-hydroxy-3-methylglutaryl CoA reductase (HMG1) in a lanosterol synthase deletion background. This strain accumulated twenty times more OS and DOS than the strain with only the native HMG1. Over-expression of squalene epoxidase (ERG1) in a lanosterol synthase background greatly enhanced the levels of DOS compared to OS.
机译:萜类化合物是最大的天然产物类别,通常与天然来源分离。然而,萜烯合酶在微生物宿主如大肠杆菌或酿酒酵母中的异源表达已成为有吸引力的选择。酿酒酵母具有完整的固醇生物合成途径,并且许多中间体也用作萜烯合酶的前体。代谢工程的工作重点是通过增加通过所需途径的碳通量,去除竞争性酶或改变酶活性来优化产品产量。这项工作描述了酿酒酵母的代谢工程,通过利用这三种方法来增强萜烯的产生。二萜合酶在以前报道为积累二萜前体香叶基香叶基香叶基焦磷酸酯(GGPP)的酵母菌株中表达。该菌株产生了毫克量的GGPP水解产物香叶基香叶醇和香叶香兰醇,以及GGPP环化产物对苯二甲酰焦磷酸酯,对戊烯二烯和阿比特二烯。因为二萜的生产受到靶向二萜合酶进入质体的转运肽的限制,所以通过在两种不同的产生二萜的菌株中共表达叶绿体加工酶来增加蛋白质的表达。体内产生的成熟的二萜合酶可以更有效地发挥作用,从而提高环化收率。本文还介绍了一种通过调节培养基pH值控制法呢基焦磷酸(FPP)水解产物谱的新方法。发现水解被磷酸酶DPP1部分控制,但是大多数FPP水解是非酶促的。在角鲨烯合酶缺失菌株中,FPP容易积聚并水解为法尼醇和神经甾醇,这些产物的比例由培养基的pH值决定。最后,构建了酵母菌株以增加30碳三萜烯前体的产量。氧化角鲨烯(OS)和双氧化角鲨烯(DOS)通过在羊毛甾醇合酶缺失背景下过表达固醇生物合成限速酶3-羟基-3-甲基戊二酰辅酶A还原酶(HMG1)。该菌株积累的OS和DOS比仅具有天然HMG1的菌株多二十倍。与OS相比,在羊毛甾醇合酶背景中角鲨烯环氧酶(ERG1)的过表达大大提高了DOS的水平。

著录项

  • 作者

    McNeil, Caroline V.;

  • 作者单位

    Rice University.;

  • 授予单位 Rice University.;
  • 学科 Chemistry Biochemistry.;Chemistry Organic.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;有机化学;
  • 关键词

  • 入库时间 2022-08-17 11:37:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号