首页> 外文学位 >Mathematical modeling of spiral wave reentry and defibrillation shocks in ventricular myocardium.
【24h】

Mathematical modeling of spiral wave reentry and defibrillation shocks in ventricular myocardium.

机译:心室心肌螺旋波折返和除颤电击的数学模型。

获取原文
获取原文并翻译 | 示例

摘要

The mechanisms of cardiac defibrillation, the most effective clinical procedure for termination of lethal cardiac arrhythmias, are not well understood. Shocks establish an electric field in the heart, which, in turn, induces changes in the transmembrane potential leading to defibrillation. The complexity of cardiac structure makes it difficult to explain, based on experiments alone, how exactly the electric field affects transmembrane potential. In an attempt to provide additional insight into the issue, in this computational study we explore the effects of strong electric shocks on myocardium in fibrillation.; Cardiac tissue is represented by the two-dimensional anisotropic bidomain model with active membrane kinetics and various fiber geometries. A single reentrant circuit of excitation serves as a simple model of the arrhythmic behavior. Bidomain model allows us to study currents introduced by the shock into the extracellular space of the myocardium.; We illustrate various mechanisms by which cardiac tissue structure, as well as the electrode shape, assists the changes in transmembrane potential throughout the myocardium that result in defibrillation. We observe the shock-induced regions of the reverse polarity of transmembrane potential, so-called virtual electrodes, that form at a distance from the physical electrodes. These regions affect the electrical state of the tissue globally by perturbing reentrant wavefronts and generating new excitations.; Our results support the hypothesis that virtual electrodes play an important role in defibrillation. The variety of simulation results described here offers a new level of understanding of the virtual electrode concept and provides a theoretical ground for future experimental studies.
机译:心脏除颤的机制,终止致命性心律不齐的最有效的临床程序,尚不甚了解。休克会在心脏内建立电场,进而引起跨膜电位的变化,从而导致除颤。心脏结构的复杂性使得仅凭实验难以解释电场究竟如何影响跨膜电位。为了提供对该问题的更多见解,在这项计算研究中,我们探讨了强电击对纤颤中心肌的影响。心脏组织由具有活性膜动力学和各种纤维几何形状的二维各向异性双畴模型表示。单个折返激励回路可作为心律不齐行为的简单模型。双域模型使我们能够研究由电击引入的心肌细胞外空间的电流。我们说明了各种机制,通过这些机制,心脏组织结构以及电极形状有助于整个心肌的跨膜电位变化,从而导致除颤。我们观察到跨膜电位反极性的电击诱发区域,即所谓的虚拟电极,与物理电极相距一定距离。这些区域通过扰动折返波前并产生新的激励来全局地影响组织的电状态。我们的结果支持虚拟电极在除颤中起重要作用的假说。这里描述的各种模拟结果为虚拟电极概念的理解提供了新的水平,并为将来的实验研究提供了理论基础。

著录项

  • 作者单位

    Tulane University.;

  • 授予单位 Tulane University.;
  • 学科 Mathematics.; Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;生物医学工程;
  • 关键词

  • 入库时间 2022-08-17 11:48:30

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号