首页> 外文学位 >Kinetic and mechanistic investigations of enzyme-catalyzed ring-opening polymerizations of lactones.
【24h】

Kinetic and mechanistic investigations of enzyme-catalyzed ring-opening polymerizations of lactones.

机译:内酯酶催化的开环聚合反应的动力学和机理研究。

获取原文
获取原文并翻译 | 示例

摘要

Studies were undertaken to gain mechanistic information on enzyme-catalyzed polymerizations by analyzing the propagation kinetics of different lipase-catalyzed ring-opening polymerization of lactones. Extensive work was conducted on two monomer:catalyst systems: (i) {dollar}varepsilon{dollar}-Caprolactone ({dollar}varepsilon{dollar}-CL) catalyzed by porcine pancreatic lipase and (ii) {dollar}omega{dollar}-Pentadecalactone (PDL) using the preferred lipase from Pseudomonas sp., in an immobilized form. The polymerizations of {dollar}varepsilon{dollar}-CL were carried out at low water levels and supplemented with either butanol or butylamine. Rates of monomer conversion, product molecular weight, total chain number, and chain end structure were determined by {dollar}sp1{dollar}H NMR. In the presence of water alone, a maximum M{dollar}rmsb{lcub}n{rcub}{dollar} of 7600 g/mole was obtained at 85% conversion which decreased to 4200 g/mole as the reaction continued to 98% conversion. Reactions with butanol and butylamine at 100% conversion gave polymers with M{dollar}sb{lcub}n{rcub}{dollar} values of 1900 and 1200 g/mole, respectively. For these three polymerizations, the total number of polymer-chains increased with conversion due to a simultaneous increase in carboxylic acid chain ends. Within 4h, butylamine was completely consumed but only 37% of butanol reacted. Reactions with butylamine occurred predominantly by an enzyme-mediated route. In addition, the living or immortal nature of the polymerizations were assessed from plots of Ln{dollar}rm{lcub}{9B}M!sb0{9B}M!sb{lcub}t{rcub}{rcub}{dollar} versus time and M{dollar}rmsb{lcub}n{rcub}{dollar} versus conversion. These results obtained from low M{dollar}rmsb{lcub}n{rcub}{dollar} products indicate that termination and chain transfer did not occur. An expression for the rate of propagation, R{dollar}sb{lcub}p{rcub}{dollar}, was also derived from the experimental data which is consistent with that derived from the proposed enzyme-catalyzed polymerization mechanism (EAM). It was concluded that this is a chain-reacted mechanism with a rate of initiation that is faster than propagation when initiating the ring-opening of {dollar}varepsilon{dollar}-CL with butylamine. The absence of termination in conjunction with the relationship between molecular weight and the total concentration of multiple initiators suggest that {dollar}varepsilon{dollar}-CL polymerization by PPL catalysis shares many features of immortal polymerizations.; The propagation kinetics ascertained from the ring-opening polymerization of PDL using the lipase from a Pseudomonas sp. immobilized on Celite 521 was in contrast to that of {dollar}varepsilon{dollar}-CL. Faster rates of monomer conversion and higher degrees of polymerization resulted from PDL reactions carried out in the bulk at 50{dollar}spcirc{dollar}C using water as the nucleopile. The final products isolated at 40% conversion had M{dollar}rmsb{lcub}n{rcub} < 5,000{dollar} g/mole and MWD of 1.1. Characterization of products at low conversion and the kinetic data accumulated in this work is also consistent with an EAM mechanism. Interestingly, this chain-reacted mechanism proceeds with a faster rate of propagation relative to initiation. The living nature of PDL polymerizations deviated from an ideal living system with (i) a slow increase in propagating chains, (ii) M{dollar}rmsb{lcub}n{rcub}{dollar} values that are higher than the theoretical M{dollar}rmsb{lcub}n{rcub}{dollar}, (iii) MWD decreasing with increasing conversions, (iv) a low initiator efficiency and (v) a R{dollar}sb{lcub}p{rcub}{dollar} that varies with the total number of polymer chains. Comparative studies were also made between the experimental results obtained herein to that of slow-initiating, living polymerization and a living polymerization propagating by slow exchanges between dormant and active chain ends. In conclusion, an empirical active site and substrate
机译:通过分析不同的脂肪酶催化的内酯开环聚合反应的传播动力学,进行了研究以获取有关酶催化的聚合反应的机理信息。对两种单体进行了广泛的研究:催化剂体系:(i)猪胰脂肪酶催化的{美元} varepsilon {dollar}-己内酯({dollar} varepsilon {dollar} -CL)和(ii){dollar}ω{dollar} -Pendadecalactone(PDL)使用固定化形式的Pseudomonas sp。的首选脂肪酶。 {美元} varepsilon {美元} -CL的聚合在低水含量下进行,并补充有丁醇或丁胺。单体转化率,产物分子量,总链数和链端结构通过{sp1} {1} H NMR测定。仅在水的存在下,以85%的转化率获得的最大M {dollar} rmsb {lcub} n {rcub} {dollar}为7600 g / mol,随着反应继续进行至98%的转化率降低至4200 g / mol。 。与丁醇和丁胺的反应以100%的转化率得到的M {dollar} sb {lcub} n {rcub} {dollar}值分别为1900和1200 g / mol。对于这三种聚合,由于羧酸链末端的同时增加,聚合物链的总数随着转化而增加。在4小时内,丁胺被完全消耗掉,但只有37%的丁醇反应。与丁胺的反应主要通过酶介导的途径发生。此外,还根据Ln {dollar} rm {lcub} {9B} M!sb0 {9B} M!sb {lcub} t {rcub} {rcub} {dollar}与时间和M {dollar} rmsb {lcub} n {rcub} {dollar}与转化之间的关系。从低M {dollar} rmsb {lcub} n {rcub} {dollar}产品获得的这些结果表明未发生终止和链转移。还从实验数据中得出了传播速率的表达式R {dollar} sb {lcub} p {rcub} {dollar},这与从所提出的酶催化聚合机理(EAM)得出的结果一致。结论是,这是链反应的机理,其引发速率比用丁胺引发{var} ilepsilon {dollar} -CL的开环时的引发速率快于传播。没有终止作用以及分子量与多种引发剂的总浓度之间的关系,表明通过PPL催化的{美元} varepsilon {dollar} -CL聚合具有永生聚合的许多特征。通过使用假单胞菌属种的脂肪酶从PDL的开环聚合中确定了传播动力学。固定在Celite 521上的是与{dollar} varepsilon {dollar} -CL相反的。单体转化率更快,聚合度更高,这是由PDL反应在50℃时使用水作为核仁在本体中进行的。以40%的转化率分离出的最终产品的M {dollar} rmsb {lcub} n {rcub} <5,000 {dollar} g / mol,MWD为1.1。低转化率产物的表征以及这项工作中积累的动力学数据也与EAM机制一致。有趣的是,相对于引发,该链反应的机理以更快的传播速率进行。 PDL聚合的活动性质与理想的活动系统不同,(i)传播链的缓慢增加;(ii)M {dollar} rmsb {lcub} n {rcub} {dollar}值高于理论M {美元} rmsb {lcub} n {rcub} {dollar},(iii)MWD随着转化率的增加而降低,(iv)启动器效率低,以及(v)R {dollar} sb {lcub} p {rcub} {dollar}随聚合物链总数的变化而变化。在本文获得的实验结果与缓慢引发的活性聚合和通过休眠和活性链末端之间的缓慢交换而传播的活性聚合之间的实验结果之间也进行了比较研究。总之,一个经验活性位点和底物

著录项

  • 作者

    Henderson, Lori Ann.;

  • 作者单位

    University of Massachusetts Lowell.;

  • 授予单位 University of Massachusetts Lowell.;
  • 学科 Chemistry Polymer.; Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 1998
  • 页码 169 p.
  • 总页数 169
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 高分子化学(高聚物);生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号