首页> 外文学位 >Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid.
【24h】

Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid.

机译:部分饱和状态下混凝土和相关多孔材料的力学行为:由于纳米级孔隙流体的运动而产生的有效应力和粘性软化。

获取原文
获取原文并翻译 | 示例

摘要

It has been said that porous materials are like music: the gaps are as important as the filled-in bits. In other words, in addition to the solid structure, pore characteristics such as size and morphology play a crucial role in defining the overall physical properties of the porous materials. This work goes a step further and examines the behaviors of some porous media that arise when the pore network is occupied by two fluids, principally air and water, as a result of drying or wetting. Such a state gives rise to fluid capillarity which can generate significant negative fluid pressures.;In the first part, a constitutive model for drying of an elastic porous medium is pro- posed and then extended to derive a novel expression for effective stress in partially saturated media. The model is motivated by the fact that in a system that is saturated by two different fluids, two different pressure inherently act on the surfaces of the pore network. This causes a non-uniform strain field in the solid structure, something that is not explicitly accounted for in the classic formulations of this problem. We use some standard micromechanical homogenization techniques to estimate the extent of the 'non-uniformity' and on this basis, evaluate the validity of the classic Bishop effective stress expression for partially saturated materials.;In the second part, we examine a diverse class of porous materials which behave in an unexpected (and even counterintuitive) way under the internal moisture fluctuations. In particular, during wetting and drying alike, the solid viscosity of these materials appears to soften, sometimes by an order of magnitude or more. Under load, this can lead to significantly increased rates of deformations. On account of the recent experimental and theoretical findings on the nature of water flow in nanometer-size hydrophillic spaces, we provide a physical explanation for the viscous softening and propose a constitutive law on this basis. To this end, it also becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description.;The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.
机译:有人说,多孔材料就像音乐:间隙与填充的钻头一样重要。换句话说,除了固体结构之外,诸如尺寸和形态的孔特征在限定多孔材料的整体物理性质中也起关键作用。这项工作更进一步,研究了干燥或润湿导致孔隙网络被两种流体(主要是空气和水)占据时,某些多孔介质的行为。这种状态会引起流体毛细作用,从而产生显着的负流体压力。在第一部分中,提出了一种干燥弹性多孔介质的本构模型,然后对其进行扩展,以得出部分饱和状态下有效应力的新表达式。媒体。该模型的动机是,在一个被两种不同流体饱和的系统中,两种不同的压力固有地作用在孔隙网络的表面上。这会导致固体结构中的应变场不均匀,这在该问题的经典公式中并未明确说明。我们使用一些标准的微机械均质化技术来估计``不均匀性''的程度,并在此基础上评估部分饱和材料经典Bishop有效应力表达的有效性。第二部分,我们研究了不同种类的在内部水分波动下表现出意想不到(甚至违反直觉)的多孔材料。特别地,在润湿和干燥等过程中,这些材料的固体粘度似乎变软,有时变软一个数量级或更大。在负载下,这可能导致变形率显着提高。根据最近关于纳米级亲水空间中水流性质的实验和理论发现,我们为粘性软化提供了物理解释,并在此基础上提出了本构关系。为此,也有必要描述双重孔隙度介质中的流体流动,该双重孔隙率介质既包含宏观孔隙度又包含纳米尺度孔隙度。我们证明了所提出的模型可以定量地捕获迄今为止逃避简单的机械描述的关键观测结果。在这项工作中经过更仔细研究的材料具有广泛的实际用途。木材和混凝土被用作全球基础设施的基础。具有纳米孔设计的多孔玻璃具有吸附和过滤功能。 KevlarRTM和类似的合成聚合物因其高的重量重量比而被用于制作防弹衣,绳索甚至帆。

著录项

  • 作者

    Vlahinic, Ivan.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Civil.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号