首页> 外文学位 >On the Role of Collisions in the Ejection of Lunar Regolith during Spacecraft Landing.
【24h】

On the Role of Collisions in the Ejection of Lunar Regolith during Spacecraft Landing.

机译:碰撞在航天器着陆期间射出月球巨石的作用。

获取原文
获取原文并翻译 | 示例

摘要

Gas-solid flows are ubiquitous in nature and industry and, despite being widely studied, are still not well understood. One example of such a flow is the spraying of lunar regolith (soil) from a rocket landing on the Moon. Such spray poses a danger to both equipment and personnel for future missions. Previous researchers, using models such as single particle trajectory models and direct simulation Monte Carlo (DSMC), have not directly studied the erosion from the surface or modeled the collisions directly.;The goal of this work is to improve upon prior models by developing and validating a new model that can be used to design mitigation systems such that future missions will not be endangered. For this purpose, the discrete element method (DEM) is first used to examine the erosion from the surface and to probe the relevant erosion mechanisms in order to better understand the erosion process. This work is performed using a variety of particle size distributions (PSDs), including monodisperse, binary, and lognormal. The results show that collisions are crucial in correctly modeling both the near-field (surface erosion) and far-field (downstream) effects.;However, the DEM model is too computationally expensive to be used for the entire lunar system. Thus, the erosion results from the DEM model are used in a kinetic-theory-based continuum model, similar to the Navier-Stokes model for traditional fluids, using a discretized PSD.;Validation of this model is performed against Apollo data and shows discrepancies between the observed and predicted particle velocities. Further work is required to resolve this discrepancy, along with additional validation due to difficulty of obtaining experimental/field data for lunar conditions.;In addition, the validity of using a single-particle drag law in rarefied conditions is evaluated using the lattice-Boltzmann method (LBM) to simulate periodic arrays of spheres. The results suggest that such an assumption may be valid if the Knudsen number (ratio of mean free path of the gas to particle diameter; used to measure rarefication) is sufficiently large, as it may be for the lunar case. However, additional work is needed to fully understand the implications of such an assumption and develop a multi-particle drag law that considers rarefication.
机译:气固两相流在自然界和工业界无处不在,尽管已得到广泛研究,但仍未得到很好的理解。这种流的一个例子是从着陆在月球上的火箭喷洒月球巨石(土壤)。此类喷雾对设备和人员构成威胁,不利于将来执行任务。以前的研究人员使用单粒子轨迹模型和直接模拟蒙特卡洛(DSMC)等模型尚未直接研究表面侵蚀或直接对碰撞进行建模。;这项工作的目的是通过开发和改进现有模型来改进现有模型。验证可用于设计缓解系统的新模型,以便将来的任务不会受到威胁。为此,首先使用离散元素法(DEM)来检查表面的腐蚀并探究相关的腐蚀机理,以便更好地了解腐蚀过程。这项工作是使用多种粒径分布(PSD)进行的,包括单分散,二元和对数正态分布。结果表明,碰撞对于正确地模拟近场(表面侵蚀)和远场(下游)效应至关重要。但是,DEM模型的计算量太大,无法用于整个月球系统。因此,与离散流体的Navier-Stokes模型类似,使用离散化PSD将DEM模型的腐蚀结果用于基于动力学理论的连续模型中;该模型针对阿波罗数据进行验证并显示出差异在观察到的和预测的粒子速度之间。需要进一步的工作来解决这种差异,并且由于难以获得月球条件的实验/现场数据而需要进行额外的验证。;此外,使用晶格-玻尔兹曼评估了在稀少条件下使用单粒子阻力定律的有效性方法(LBM)来模拟球体的周期性阵列。结果表明,如果Knudsen数(气体的平均自由程与粒径的比值;用于测量稀化度)足够大(如在月球情况下),则这种假设可能是有效的。但是,还需要进行其他工作才能充分理解这种假设的含义,并开发出考虑稀疏化的多粒子阻力定律。

著录项

  • 作者

    Berger, Kyle Joseph.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Chemical engineering.;Mechanics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号