首页> 外文学位 >Design Exploration and Application of Reversible Circuits in Emerging Technologies.
【24h】

Design Exploration and Application of Reversible Circuits in Emerging Technologies.

机译:新兴技术中可逆电路的设计探索与应用。

获取原文
获取原文并翻译 | 示例

摘要

The reversible logic has promising applications in emerging computing paradigms, such as quantum computing, quantum dot cellular automata, optical computing, etc. In reversible logic gates, there is a unique one-to-one mapping between the inputs and outputs. To generate a useful gate function, the reversible gates require some constant ancillary inputs called ancilla inputs. Also to maintain the reversibility of the circuits some additional unused outputs are required that are referred to as the garbage outputs. The number of ancilla inputs, the number of garbage outputs and quantum cost plays an important role in the evaluation of reversible circuits. Thus minimizing these parameters are important for designing an efficient reversible circuit. Reversible circuits are of highest interest in optical computing, quantum dot cellular automata and quantum computing. The quantum gates perform an elementary unitary operation on one, two or more two-state quantum systems called qubits. Any unitary operation is reversible in nature, and hence, quantum networks are also reversible, to conclude the quantum computers must be built from reversible logic components.;The main contribution of this dissertation is the design exploration and application of reversible circuits in emerging nanotechnologies. The emerging technologies explored in this work are 1) Optical quantum computing 2) Quantum computing.;The first contribution of this dissertation is Mach-Zehnder interferometer based design of all optical reversible binary adder. The all optical reversible adder design is based on two new optical reversible gates referred as optical reversible gate I (ORG-I) and optical reversible gate II (ORG-II) and the existing all optical Feynman gate. The two new reversible gates ORG-I and ORGI-II have been proposed and can implement a reversible adder with a reduced optical cost which is equal to the number of MZI switches required, less propagation delay, and with zero overhead in terms of number of ancilla inputs and the garbage outputs. The proposed all optical reversible adder design based on the ORG-I and ORG-II reversible gates are compared and shown to be better than the other existing designs of reversible adder proposed in the non-optical domain in terms of number of MZI switches, delay, the number of ancilla inputs and the garbage outputs. The proposed all optical reversible adder will be a key component of an all optical reversible arithmetic logical unit (ALU), that is a quite essential component in a wide variety of optical signal processing applications. In the existing literature, the NAND logic based implementation is the only known implementation available for reversible gates and its functions. There is a lack of research in the direction of NOR logic based implementation of reversible gates and functions. The second contribution of this dissertation is the design of NOR logic based n-input and n-output reversible gates, one of which can be efficiently mapped into optical computing using the Mach-Zehnder interferometer (MZI), while the other can be mapped efficiently in optical computing using the linear optical quantum gates. The proposed reversible NOR gates work as a corresponding NOR counterpart of NAND logic based Toffoli gates. The proposed optical reversible NOR logic gates can implement the reversible boolean logic functions with less number of linear optical quantum logic gates with reduced optical cost and propagation delay compared to the implementation using existing optical reversible NAND gates. It is illustrated that an optical reversible gate library having both optical Toffoli gate and the proposed optical reversible NOR gate is superior compared to the library containing only the optical Toffoli gate: (i) in terms of number of linear optical quantum gates when implemented using linear optical quantum computing (LOQC), (ii) in terms of optical cost and delay when implemented using the Mach-Zehnder interferometer. The third contribution of this dissertation is a binary tree-based design methodology for a NxN reversible multiplier. The proposed binary tree-based design methodology for a NxN reversible multiplier performs the addition of partial products in parallel using the reversible ripple adders with zero ancilla bit and zero garbage bit; thereby, minimizing the number of ancilla and garbage bits used in the design. The proposed design methodology shows improvements in terms of number of ancilla inputs and garbage outputs compared to all the existing reversible multiplier designs. The methodology is also extended to the design of NxN reversible signed multiplier based on modified Baugh-Wooley multiplication methodology.
机译:可逆逻辑在新兴的计算范例中具有广阔的应用前景,例如量子计算,量子点元胞自动机,光学计算等。在可逆逻辑门中,输入和输出之间存在唯一的一对一映射。为了产生有用的门功能,可逆门需要一些恒定的辅助输入,称为辅助输入。同样,为了保持电路的可逆性,需要一些额外的未使用输出,这些输出被称为垃圾输出。辅助输入的数量,垃圾输出的数量和量子成本在可逆电路的评估中起着重要的作用。因此,最小化这些参数对于设计有效的可逆电路很重要。可逆电路在光学计算,量子点元胞自动机和量子计算中最受关注。量子门在称为量子位的一个,两个或多个二态量子系统上执行基本unit运算。任何单元运算本质上都是可逆的,因此,量子网络也是可逆的,从而得出结论,量子计算机必须由可逆逻辑组件构建。本论文的主要贡献是可逆电路在新兴纳米技术中的设计探索和应用。本文研究的新兴技术是:1)光量子计算2)量子计算。本论文的第一贡献是基于Mach-Zehnder干涉仪的全光可逆二进制加法器设计。全光可逆加法器设计基于两个新的光可逆门(称为光可逆门I(ORG-I)和光可逆门II(ORG-II))以及现有的全光费恩曼门。已经提出了两个新的可逆门ORG-I和ORGI-II,它们可以以可降低的光学成本实现可逆加法器,该光学成本等于所需的MZI开关数量,传播延迟更小,并且在数量上就零开销辅助输入和垃圾输出。比较了基于ORG-I和ORG-II可逆门的提议的所有光学可逆加法器设计,并且在MZI开关数量,延迟方面,比在非光学领域中提出的其他现有可逆加法器设计要好。 ,辅助输入和垃圾输出的数量。拟议的全光可逆加法器将是全光可逆算术逻辑单元(ALU)的关键组件,这是在各种光信号处理应用中必不可少的组件。在现有文献中,基于NAND逻辑的实现是可用于可逆门及其功能的唯一已知实现。在基于NOR逻辑的可逆门和功能实现方面,尚缺乏研究。本文的第二个贡献是基于NOR逻辑的n输入和n输出可逆门的设计,其中之一可以使用Mach-Zehnder干涉仪(MZI)高效地映射到光学计算中,而另一个可以高效地映射在光学计算中使用线性光学量子门。所提出的可逆或非门作为基于NAND逻辑的Toffoli门的对应NOR对应物。与使用现有的光可逆NAND门的实施方式相比,所提出的光可逆NOR逻辑门可以用更少数量的线性光量子逻辑门来实现可逆布尔逻辑功能,从而减少了光学成本和传播延迟。示出了同时具有光学托夫里门和所提出的光学可逆或非门的光学可逆门库比仅包含光学托夫里门的库优越:(i)使用线性实现时线性光学量子门的数量(ii)使用Mach-Zehnder干涉仪实现的光学成本和延迟。本文的第三点贡献是针对NxN可逆乘法器的基于二叉树的设计方法。提议的基于NxN可逆乘法器的基于二叉树的设计方法,使用具有零辅助位和零垃圾位的可逆波纹加法器,并行执行部分乘积的加法运算。从而最大程度地减少了设计中使用的辅助和垃圾位的数量。与所有现有的可逆乘法器设计相比,拟议的设计方法显示出辅助输入和垃圾输出数量方面的改进。该方法还扩展到基于改进的Baugh-Wooley乘法方法的NxN可逆有符号乘法器的设计。

著录项

  • 作者

    Kotiyal, Saurabh.;

  • 作者单位

    University of South Florida.;

  • 授予单位 University of South Florida.;
  • 学科 Computer engineering.;Computer science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 124 p.
  • 总页数 124
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:48:27

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号