首页> 外文学位 >Microphone and geophone data analysis for noise characterization and seismic signal enhancement.
【24h】

Microphone and geophone data analysis for noise characterization and seismic signal enhancement.

机译:麦克风和地震检波器数据分析,用于噪声表征和地震信号增强。

获取原文
获取原文并翻译 | 示例

摘要

Source-generated noise, such as air waves and ground roll, is a major challenge in land seismic acquisition. Since much of the surface noise in geophone records arises from a direct impact of air pressure on the geophone case or by conversion of air pressure into ground motion or vice versa, it might be possible to measure air pressure and use it as reference for surface noise attenuation. Microphone data is recorded during land seismic data acquisition to provide air pressure measurements proximal to the geophones. A combination method is developed in the time-frequency domain with the aid of the Gabor transform to suppress the air noise on the geophones. This method is based on the construction of a "mask" function from the microphone Gabor spectrum by setting a threshold on its Gabor coefficients. Then, multiplying the geophone Gabor spectrum with the "mask" function achieves a deterministic cancellation of the associated air-noise component in the geophone. This methodology is applied to two different 3C-2D seismic surveys conducted in Western Canada in 2000 and 2008. In these surveys, the strongest noise measured with microphone prototypes (designed, manufactured and tested by the CREWES Project), is the air blast (or air wave). The results show consistent air wave measurements (both in amplitude and waveform) from trace to trace in the microphone data. The air wave on geophone shot gathers is successfully attenuated by using multiple "mask" functions derived from the microphone data on a trace-by-trace basis. In a separate experiment, a comparison between a single microphone prototype and a calibrated microphone and two professional audio recording microphones, suggests that all microphones under test respond quite similar at frequencies where the source-generated air wave is strongest (>100 Hz). In contrast, all microphones respond very differently to low frequencies, where other noises such as surface waves are dominant (30 Hz).
机译:源产生的噪声,例如空气波和地滚波,是陆地地震采集中的主要挑战。由于地震检波器记录中的许多表面噪声是由于气压对地震检波器外壳的直接影响或通过将气压转换为地面运动而产生的,反之亦然,因此有可能测量气压并将其用作地面噪声的参考衰减。在陆地地震数据采集期间记录麦克风数据,以提供接近地震检波器的气压测量值。借助Gabor变换在时频域中开发了一种组合方法,以抑制地震检波器上的空气噪声。该方法基于通过在麦克风Gabor频谱上设置其Gabor系数阈值来构造“掩码”功能。然后,将地震检波器的Gabor频谱乘以“遮罩”功能,就可以确定性地消除地震检波器中相关的空气噪声分量。此方法适用于2000年和2008年在加拿大西部进行的两次不同的3C-2D地震勘测。在这些勘测中,使用麦克风原型(由CREWES项目设计,制造和测试)测得的最强噪声是鼓风(或空气波)。结果表明,麦克风数据中迹线之间的气波测量值(幅度和波形)均一致。通过在逐迹的基础上使用从麦克风数据派生的多个“遮罩”功能,可以成功地衰减地震检波器射击道上的空气波。在一个单独的实验中,对单个麦克风原型和经过校准的麦克风与两个专业音频录制麦克风之间的比较表明,所有被测麦克风在源产生的空气波最强(> 100 Hz)的频率下的响应非常相似。相反,所有麦克风对低频的响应截然不同,在低频中,其他噪声(例如表面波)占主导地位(<30 Hz)。

著录项

  • 作者单位

    University of Calgary (Canada).;

  • 授予单位 University of Calgary (Canada).;
  • 学科 Geophysics.;Physics Acoustics.;Engineering Environmental.
  • 学位 M.Sc.
  • 年度 2009
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;环境污染及其防治;声学;
  • 关键词

  • 入库时间 2022-08-17 11:37:37

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号