首页> 外文学位 >Material Dispersion by Ocean Eddies and Waves.
【24h】

Material Dispersion by Ocean Eddies and Waves.

机译:海洋涡流和波浪的物质扩散。

获取原文
获取原文并翻译 | 示例

摘要

Material dispersion in the ocean, such as the dispersion of natural and anthropogenic tracers (e.g. nutrients, dissolved gases, pollutants), is important in understanding processes at a variety of scales, ranging from plankton production to climate variability. Material dispersion is controlled by many dynamic processes; the present research focuses on the 3D material dispersion by ocean eddies and waves (inertial waves and internal gravity waves).;Ocean eddies may suffer various hydrodynamic instabilities, such as barotropic instability, inertial instability and 3D instability. In this work, I investigate how instabilities impact the 3D material dispersion by ocean eddies, using analytical methods and numerical simulations. I discover for the first time that material can be exchanged through 3D pathways which link a family of vortices generated by the instabilities of a single, initially unstable eddy. I also show that instabilities can increase the magnitude of vertical velocity and mixing rate. Besides, I find that instabilities can cause the kinetic energy wavenumber spectrum to have a power-law regime different with the classic regimes of k--5/3 and k --3, and propose a new energy spectrum to interpret the non-classic regime.;Inertial waves can arise in rotating homogeneous fluids. By numerically simulating an initially unstable eddy, I discover for the first time a special kind of inertial waves, which are emitted in a spiral manner from the eddies; I refer to these waves as spiral inertial waves (SIWs). SIWs appear at small Rossby numbers (0.01 ≤ Ro ≤ 1) according to our parameter sweep experiments; the amplitude, wavelength and frequency of SIWs are sensitive to Rossby numbers. I extend the theory of Lighthill-Ford radiation into inertial waves, and propose an indicator for the emission of inertial waves; this indicator may be adopted into general circulation models to parameterize inertial waves. Additionally, when releasing passive tracers into the wave field, SIWs organize tracers into spirals, and modify the tracer's local rate of change by advecting tracers vertically. Further, the spirals of SIWs resembles some spiral features observed in the ocean and atmosphere, for example, spiral ocean eddies and spiral hurricane rainbands; thus, SIWs may offer another mechanism to form spiral eddies and rainbands. Since no density anomaly is required to generate the spirals of SIWs, I infer that the density anomaly, hence the baroclinic or frontal instability, is unlikely to be the key factor in the formation of these spiral features.;Internal gravity waves are ubiquitous in the ocean; they can transport nutrients, pollutants, sediments, etc. Using numerical simulations of internal waves that are initialized with the Garrett-Munk spectrum, I investigate the material dispersion by internal waves; the dispersion regimes are identified in terms of two metrics, the relative dispersion and finite-scale Lyapunov exponent (FSLE). The metric of relative dispersion reveals that dispersion regime by internal waves is between ballistic and diffusive regimes; while, the metric of FSLE indicates that the regime is ballistic. Besides, I show that internal waves below an upper mixed layer can generate flows in the mixed layer, leading to material dispersion. The dispersion produced by both internal waves and mixed layer eddies is also examined.
机译:物质在海洋中的扩散,例如自然和人为示踪剂的扩散(例如养分,溶解气体,污染物),对于理解从浮游生物生产到气候多变性的各种规模的过程都很重要。材料分散是由许多动态过程控制的。目前的研究主要集中在海洋涡流和波浪(惯性波和内部重力波)对3D材料的扩散上。海洋涡流可能遭受各种流体动力失稳,如正压失稳,惯性不稳和3D不稳。在这项工作中,我将使用分析方法和数值模拟研究不稳定性如何影响海洋涡流对3D物质扩散的影响。我第一次发现可以通过3D途径交换材料,这些途径将由最初不稳定的单个涡的不稳定性所产生的一系列涡旋联系起来。我还表明,不稳定性会增加垂直速度和混合速率的大小。此外,我发现不稳定性会导致动能波数谱具有与经典k--5 / 3和k --3谱不同的幂律谱,并提出了新的能谱来解释非经典谱。惯性波会在旋转的均质流体中产生。通过数值模拟最初不稳定的涡流,我第一次发现了一种特殊的惯性波,它们从涡流以螺旋方式发出。我将这些波称为螺旋惯性波(SIW)。根据我们的参数扫描实验,SIW以较小的Rossby数出现(0.01≤Ro≤1)。 SIW的幅度,波长和频率对Rossby数敏感。我将Lighthill-Ford辐射的理论扩展为惯性波,并提出了一种指示惯性波发射的指标。该指标可用于一般的循环模型,以参数化惯性波。此外,当将无源示踪剂释放到波场中时,SIW将示踪剂组织成螺旋形,并通过垂直平移示踪剂来修改示踪剂的局部变化率。此外,小型固体废物的螺旋形类似于在海洋和大气中观察到的一些螺旋形特征,例如,螺旋形的海洋涡旋和螺旋形的飓风雨带;因此,SIW可能会提供另一种机制来形成涡旋和雨带。由于不需要密度异常来产生SIW的螺旋,我推断密度异常(因此斜压或锋面的不稳定性)不太可能是形成这些螺旋形特征的关键因素。海洋;他们可以传输营养,污染物,沉积物等。利用Garrett-Munk谱初始化的内部波的数值模拟,我研究了内部波对材料的色散。弥散机制是根据两个度量来确定的,即相对弥散和有限尺度李雅普诺夫指数(FSLE)。相对色散的度量表明,内部波的色散状态介于弹道和扩散状态之间; FSLE的度量标准表明该政权是弹道的。此外,我证明了上层混合层下面的内部波会在混合层中产生流动,从而导致材料分散。还检查了内部波和混合层涡流产生的色散。

著录项

  • 作者

    Wang, Peng.;

  • 作者单位

    University of Miami.;

  • 授予单位 University of Miami.;
  • 学科 Physical oceanography.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号