首页> 外文学位 >Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes.
【24h】

Local electrical and dielectric properties of nanocrystalline solid oxide fuel cell electrolytes.

机译:纳米晶体固体氧化物燃料电池电解质的局部电和介电性能。

获取原文
获取原文并翻译 | 示例

摘要

Reducing the operating temperature of solid oxide fuel cells (SOFCs), to improve durability and lower cost, requires an increase in the low temperature oxygen-ion conductivity of the electrolyte. This work investigates whether the electrolyte conductivity could be increased by decreasing the grain size into the nanoscale.Bulk electrolytes - cubic yttria-stabilized zirconia (YSZ, with 8mol% Y2O3), tetragonal zirconia polycrystal (TZP, with 3mol% Y2O3), and Sr- and Mg- co-doped LaGaO3 (LSGM) - were fabricated with grain sizes ranging from 10nm to 3mum, using commercial or sol-gel-derived nanopowders and various sintering techniques. Local grain boundary and grain core conductivities and dielectric constants were analyzed over a range of temperatures and atmospheres using AC-impedance spectroscopy and our novel nano-Grain Composite Model, and interpreted in terms of grain-size dependent defect chemistry (e.g. space charge models, local thermodynamics, and impurity/ acceptor segregation).All three oxides exhibited qualitatively similar electrical/ dielectric behavior. Their single crystal/ grain core dielectric constants exhibited an upturn with temperature, which was attributed to the onset of dipolar relaxation. Grain boundary dielectric constants were consistently higher than grain core dielectric constants at the nanoscale. n-GCM-derived electrical grain boundary half-widths agreed well with measured acceptor dopant segregation widths at grain boundaries. The local grain boundary conductivity was consistently increased in nanocrystalline vs. microcrystalline samples, although the mechanisms responsible for this behavior differed in each material. Grain core conductivity did not change with grain size in each case.Despite the increase in local grain boundary conductivity at the nanoscale, the total conductivity decreased monotonically with decreasing grain size in all three electrolytes the grain boundaries remain barriers to transport (relative to grain cores), and there are many more of them at the nanoscale. Based on this research, it appears that these acceptor-doped nanocrystalline oxygen ion conductors in bulk form may not show improved ionic conductivity for use in reduced-temperature SOFCs.Nonetheless, potentially beneficial effects of nanocrystallinity were observed: nanocrystalline LSGM exhibited mixed ionic and electronic conductivity in oxidizing environments with electronic transference numbers that are orders of magnitude higher than in microcrystalline LSGM, and YSZ and TZP enabled significant protonic conductivity at the nanoscale.
机译:降低固体氧化物燃料电池(SOFC)的工作温度以提高耐久性和降低成本,需要增加电解质的低温氧离子传导性。这项工作研究了是否可以通过减小晶粒尺寸到纳米级来提高电解质的电导率。本体电解质-立方氧化钇稳定的氧化锆(YSZ,Y2O3含量为8mol%),四方氧化锆多晶体(TZP,Y2O3含量为3mol%)使用商业或溶胶凝胶衍生的纳米粉和各种烧结技术,制备了Mg和Mg共掺杂的LaGaO3(LSGM),晶粒尺寸为10nm至3mum。使用交流阻抗谱和我们新颖的纳米颗粒复合模型在一定温度和大气范围内分析了局部晶界和晶核电导率以及介电常数,并根据晶粒尺寸相关的缺陷化学性质(例如空间电荷模型,局部热力学和杂质/受体的分离)。所有三种氧化物在质量上都具有相似的电/介电行为。它们的单晶/晶核介电常数随温度升高,这归因于偶极弛豫的发生。在纳米尺度上,晶界介电常数始终高于晶核介电常数。源自n-GCM的电子晶界半宽度与在晶界处测得的受体掺杂物偏析宽度非常吻合。纳米晶与微晶样品中的局部晶界电导率不断提高,尽管造成这种行为的机理在每种材料中都不同。在每种情况下,晶核电导率都不会随晶粒尺寸而变化。尽管在纳米级局部晶界电导率增加,但所有三种电解质中的总电导率均随着晶粒尺寸的减小而单调降低,晶界仍然是传输的障碍(相对于晶核),并且其中还有更多的纳米级。根据这项研究,似乎这些主体掺杂的纳米晶氧离子导体可能无法显示出用于低温SOFC的改善的离子电导率,但仍观察到纳米晶度的潜在有益作用:纳米晶LSGM表现出离子和电子的混合在电子转移数比微晶LSGM高几个数量级的氧化环境中,YSZ和TZP在纳米级具有显着的质子电导率。

著录项

  • 作者

    Perry, Nicola Helen.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号