首页> 外文学位 >Deep sub-micron MOS transistor design and manufacturing sensitivity analysis.
【24h】

Deep sub-micron MOS transistor design and manufacturing sensitivity analysis.

机译:深亚微米MOS晶体管的设计和制造灵敏度分析。

获取原文
获取原文并翻译 | 示例

摘要

Advances in both models and simulation platforms in Technology Computer Aided Design (TCAD) have made it possible to perform highly useful predictive studies of deep submicron MOSFETs. These studies can be directed to both the design and optimization of MOSFETs for a given technology, and to a manufacturing sensitivity analysis to obtain a quantitative understanding of the sensitivity of the device electrical parameters to the random structure and doping profile variations anticipated in the manufacturing process. Such results are very useful in both technology and manufacturing tool development.; The first part of this dissertation project was aimed at developing a methodology to efficiently design MOS transistors that satisfy given target structural and electrical specifications. A detailed structural design and analysis was performed in order to identify optimum design parameter regions for a 180nm NMOS transistor for both high performance desktop logic applications and low power applications suitable for portable electronics, for a 180nm PMOS transistor for desktop applications, and finally for a 100nm NMOS transistor. The approach utilizes the device models and simulation tool capabilities that have been previously developed and exist in the Microelectronics Research Center at UT to perform the required analyses and simulations. A set of basic structure and doping profile parameters was identified and utilized in the analysis in anticipation of probable future trends. In order to avoid adverse short-channel characteristics and maximize device performance, two channel engineering options, a halo implant and an anti-punchthrough (APT) implant, were investigated. The intention of the analysis was to maximize IDsat while satisfying the off-state leakage criteria and short-channel constraint. In order to view and analyze the results, a design matrix was generated for devices at each of a number of different shallow S/D junction depths, showing both the IDsat and ΔVT (DIBL) values plotted against the halo or APT implant dose and energy. These design matrices provide an understanding of the acceptable regions of device operation for different profile conditions; An important factor for both yield enhancement and process and tool development is an insight into the sensitivity of the electrical performance parameters of the device to the random manufacturing related variations. In this analysis, it is these variations of the nominal structural and doping parameters (inputs) of a transistor that are correlated to the resulting electrical characteristics (responses) of the device. Both a 180nm PMOSFET and a 100nm NMOSFET were designed and optimized to be as representative as possible as intended for use by industry, and were then used as the nominal structure for the analysis. The primary aim of this analysis was to obtain a set of complete, second-order empirical equations relating the random manufacturing variations in the structural and doping parameters of the representative MOSFET to its key device electrical parameters such as saturation and off-state leakage currents, threshold voltage, etc. Nine input parameters such as gate length, gate oxide, channel doping, etc., were varied in accordance with a three-level Box-Behnken design which provides a complete quadratic model. A Monte-Carlo simulator was developed and used to extract the statistical distribution of each of the electrical responses and compare it to a normal distribution that best fit the data.
机译:技术计算机辅助设计(TCAD)的模型和仿真平台都取得了进步,这使得对深亚微米MOSFET进行高度有用的预测研究成为可能。这些研究可以针对给定技术进行MOSFET的设计和优化,也可以进行制造灵敏度分析,以定量了解器件电参数对制造过程中预期的随机结构和掺杂分布变化的敏感性。 。这样的结果对于技术和制造工具的开发都是非常有用的。本论文项目的第一部分旨在开发一种方法,以有效设计满足给定目标结构和电气规格的MOS晶体管。进行了详细的结构设计和分析,以便确定适用于便携式电子产品的高性能台式机逻辑应用和低功耗应用的180nm NMOS晶体管,适用于台式机应用的180nm PMOS晶体管,以及最终的最佳设计参数区域。 100nm NMOS晶体管。该方法利用了先前在UT微电子研究中心开发并存在的设备模型和仿真工具功能,以执行所需的分析和仿真。确定了一组基本结构和掺杂分布参数,并将其用于预期的未来趋势分析中。为了避免不良的短沟道特性并最大化器件性能,研究了两种沟道工程选择,即光晕注入和抗穿通(APT)注入。分析的目的是在满足断态泄漏准则和短通道约束的同时最大化I Dsat 。为了查看和分析结果,针对多个不同浅S / D结深度中的每个深度的器件生成了一个设计矩阵,显示了I Dsat 和ΔV T (DIBL)值相对于晕圈或APT植入剂量和能量的关系。这些设计矩阵提供了对于不同配置文件条件下可接受的器件操作区域的了解;良率提高以及工艺和工具开发的重要因素是洞悉设备电气性能参数对与随机制造相关的变化的敏感性。在此分析中,正是晶体管的标称结构和掺杂参数(输入)的这些变化与器件的最终电特性(响应)相关。 180nm PMOSFET和100nm NMOSFET均经过设计和优化,以尽可能地具有代表性,供行业使用,然后用作分析的标称结构。该分析的主要目的是获得一组完整的二阶经验公式,该公式将代表性MOSFET的结构和掺杂参数的随机制造变化与其关键器件电参数(例如饱和和断态泄漏电流)相关联,根据三级Box-Behnken设计(提供完整的二次模型),改变了九个输入参数(例如栅极长度,栅极氧化物,沟道掺杂等),从而改变了阈值电压等。开发了Monte-Carlo模拟器,并将其用于提取每个电响应的统计分布,并将其与最适合数据的正态分布进行比较。

著录项

  • 作者

    Khan, Shamsul Arefin.;

  • 作者单位

    The University of Texas at Austin.;

  • 授予单位 The University of Texas at Austin.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号