首页> 外文学位 >Control of particle morphology and homogeneity during spray pyrolysis: Diffusion drying stage.
【24h】

Control of particle morphology and homogeneity during spray pyrolysis: Diffusion drying stage.

机译:喷雾热解过程中颗粒形态和均质性的控制:扩散干燥阶段。

获取原文
获取原文并翻译 | 示例

摘要

The objective of this study is to develop the capabilities to determine the effect of operational parameters on the morphology of powders produced by spray pyrolysis—particularly the control of hollow or solid particles.; A theoretical model has been constructed to predict the development of particle morphology during drying process. This model is used to describe the evaporation of droplet containing dissolved solid undergoing diffusion drying. Included in the model were the solute crystallization and crust fragmentation mechanisms, which were major innovations in thesis. The model predicts the solute concentration and droplet temperature profiles as a function of time. The first stage of drying is characterized by the solvent evaporation from a free liquid surface. The second stage of drying is characterized by the solvent evaporation through a porous shell. During the second stage of drying, the droplet can be viewed as composed of three regions. They are (1) central wet kernel (unsaturated liquid); (2) porous shell (saturated liquid and solid mixture); and (3) ambient gas–vapor mixture. During this stage, the drop temperature as well as inner partial pressure rises rapidly once the drop forms a solid crust at the surface. Fragmentation occurs when the partial pressure inside the drop overcomes the fragmentation energy of the crust.; A device used for monitoring morphological characteristics of a single suspended droplet was constructed. Several materials with different physical properties such as solubility, thermal conductivity, and latent heat of crystallization were investigated. The measurement of droplet diameter is quantitatively realistic in the early drying stage because the droplet is shrinking more or less uniformly. It has been shown that the shell structure of a drying droplet plays an important role in determining the final dried particle morphology. In addition, the shell structure of a drying droplet varies from material to material, and it increases the difficulty in the modeling prediction. In the cases of sodium chloride and ammonium chloride, the model gave good quantitative prediction for low drying temperatures in the first stage of drying process. Two sets of experiments (Ca(C2H3O2)2 vs. NaC2H3O2 and K2CO3 vs. Na2CO3) were demonstrated to examine the effect of material solubility. The effect of latent heat of crystallization was examined by experiment (NH4Cl vs. NaCl). Generally, numerical simulation gave reasonably good qualitative prediction for most of test materials.; In summary, low drying temperature, slow heating rate, slow gas flow rate, and material with low thermal conductivity and high latent heat of crystallization favor the formation of small solid particle. High porosity and high permeability of shell structure lead to small solid particle formation. High relative humidity, small initial size, solvent with high latent heat of evaporation and material with high solubility lead to small, dense but irregular particle shapes. The high initial solute concentration is favorable for the formation of a large dense solid particle. Conditions conductive to solid and/or hollow particle formation are presented in the conclusions of this work. (Abstract shortened by UMI.)
机译:这项研究的目的是开发确定操作参数对喷雾热解法生产的粉末形态(特别是中空或固体颗粒的控制)影响的能力。已经建立了理论模型来预测干燥过程中颗粒形态的发展。该模型用于描述经过扩散干燥的包含溶解的固体的液滴的蒸发。该模型包括溶质结晶和结壳碎裂机制,这是论文的主要创新之处。该模型预测溶质浓度和液滴温度曲线随时间变化。干燥的第一阶段的特征在于溶剂从自由液体表面蒸发。干燥的第二阶段的特征在于溶剂通过多孔壳蒸发。在干燥的第二阶段,可以将液滴视为由三个区域组成。它们是(1)中央湿仁(不饱和液体); (2)多孔壳(饱和的液体和固体混合物); (3)气体-蒸汽的混合气体。在此阶段,一旦液滴在表面形成坚固的外壳,液滴温度以及内部分压就会迅速上升。当液滴内部的分压克服了地壳的碎裂能量时,就会发生碎裂。构造了用于监测单个悬浮液滴的形态特征的装置。研究了几种具有不同物理性质的材料,例如溶解性,导热性和结晶潜热。液滴直径的测量在干燥的早期阶段在定量上是现实的,因为液滴或多或少均匀地收缩。已经表明,干燥液滴的壳结构在确定最终干燥颗粒的形态方面起着重要作用。另外,干燥液滴的壳结构因材料而异,这增加了建模预测的难度。在氯化钠和氯化铵的情况下,该模型对干燥过程第一阶段的低干燥温度给出了良好的定量预测。两组实验(Ca(C 2 H 3 O 2 2 与NaC 2 H 3 O 2 和K 2 CO 3 与Na 2 CO 3 )证明了材料溶解度的影响。通过实验(NH 4 Cl对NaCl)检验了结晶潜热的影响。通常,数值模拟对大多数测试材料给出了很好的定性预测。总之,低的干燥温度,缓慢的加热速率,缓慢的气体流速以及具有低导热率和高结晶潜热的材料有利于形成小的固体颗粒。壳结构的高孔隙率和高渗透性导致小的固体颗粒形成。较高的相对湿度,较小的初始尺寸,具有较高蒸发潜热的溶剂以及具有较高溶解度的材料会导致较小,致密但不规则的颗粒形状。高的初始溶质浓度有利于形成大的致密固体颗粒。在这项工作的结论中提出了有助于固体和/或空心颗粒形成的条件。 (摘要由UMI缩短。)

著录项

  • 作者

    Lin, Jui-Chen.;

  • 作者单位

    University of Maryland College Park.;

  • 授予单位 University of Maryland College Park.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 279 p.
  • 总页数 279
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号