首页> 外文学位 >Systems Health Management and Prognosis using Physics Based Modeling and Machine Learning.
【24h】

Systems Health Management and Prognosis using Physics Based Modeling and Machine Learning.

机译:使用基于物理的建模和机器学习进行系统健康管理和预测。

获取原文
获取原文并翻译 | 示例

摘要

There is a concerted effort in developing robust systems health monitoring/management (SHM) technology as a means to reduce the life cycle costs, improve availability, extend life and minimize downtime of various platforms including aerospace and civil infrastructure. The implementation of a robust SHM system requires a collaborative effort in a variety of areas such as sensor development, damage detection and localization, physics based models, and prognosis models for residual useful life (RUL) estimation. Damage localization and prediction is further complicated by geometric, material, loading, and environmental variabilities. Therefore, it is essential to develop robust SHM methodologies by taking into account such uncertainties. In this research, damage localization and RUL estimation of two different physical systems are addressed: (i) fatigue crack propagation in metallic materials under complex multiaxial loading and (ii) temporal scour prediction near bridge piers. With little modifications, the methodologies developed can be applied to other systems.;Current practice in fatigue life prediction is based on either physics based modeling or data-driven methods, and is limited to predicting RUL for simple geometries under uniaxial loading conditions. In this research, crack initiation and propagation behavior under uniaxial and complex biaxial fatigue loading is addressed. The crack propagation behavior is studied by performing extensive material characterization and fatigue testing under in-plane biaxial loading, both in-phase and out-of-phase, with different biaxiality ratios. A hybrid prognosis model, which combines machine learning with physics based modeling, is developed to account for the uncertainties in crack propagation and fatigue life prediction due to variabilities in material microstructural characteristics, crack localization information and environmental changes. The methodology iteratively combines localization information with hybrid prognosis models using sequential Bayesian techniques. The results show significant improvements in the localization and prediction accuracy under varying temperature.;For civil infrastructure, especially bridges, pier scour is a major failure mechanism. Currently available techniques are developed from a design perspective and provide highly conservative scour estimates. In this research, a fully probabilistic scour prediction methodology is developed using machine learning to accurately predict scour in real-time under varying flow conditions.
机译:在开发健壮的系统健康监控/管理(SHM)技术方面,人们正在齐心协力,以此来降低生命周期成本,提高可用性,延长寿命并最大程度减少包括航空航天和民用基础设施在内的各种平台的停机时间。强大的SHM系统的实施需要在各个领域进行协作,例如传感器开发,损伤检测和定位,基于物理的模型以及剩余使用寿命(RUL)估计的预测模型。几何,材料,载荷和环境变化会进一步损害损伤的定位和预测。因此,考虑到这些不确定因素,发展健壮的SHM方法至关重要。在这项研究中,研究了两种不同物理系统的损伤定位和RUL估计:(i)复杂多轴载荷下金属材料中的疲劳裂纹扩展,以及(ii)桥墩附近的临时冲刷预测。只需进行很少的修改,就可以将开发的方法应用于其他系统。疲劳寿命预测的当前实践基于基于物理的建模或数据驱动方法,并且仅限于预测单轴载荷条件下简单几何形状的RUL。在这项研究中,解决了在单轴和复杂双轴疲劳载荷下的裂纹萌生和扩展行为。通过在具有不同双轴比的同相和异相的平面内双轴载荷下进行广泛的材料表征和疲劳测试,研究了裂纹扩展行为。开发了一种将机器学习与基于物理的建模相结合的混合预测模型,以解决由于材料微观结构特征,裂纹局部化信息和环境变化而导致的裂纹扩展和疲劳寿命预测的不确定性。该方法使用顺序贝叶斯技术将定位信息与混合预测模型进行迭代组合。结果表明,在不同温度下,定位和预测精度均得到了显着改善。当前可用的技术是从设计角度开发的,并提供高度保守的冲刷估算。在这项研究中,使用机器学习开发了一种完全概率的冲刷预测方法,以在变化的流量条件下实时准确地实时预测冲刷。

著录项

  • 作者

    Neerukatti, Rajesh Kumar.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Mechanical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 209 p.
  • 总页数 209
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号