首页> 外文学位 >Numerical algorithms for the atomistic dopant profiling of semiconductor materials.
【24h】

Numerical algorithms for the atomistic dopant profiling of semiconductor materials.

机译:半导体材料原子掺杂分布图的数值算法。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation, we investigate the possibility to use scanning microscopy such as scanning capacitance microscopy (SCM) and scanning spreading resistance microscopy (SSRM) for the "atomistic" dopant profiling of semiconductor materials. For this purpose, we first analyze the discrete effects of random dopant fluctuations (RDF) on SCM and SSRM measurements with nanoscale probes and show that RDF significantly affects the differential capacitance and spreading resistance of the SCM and SSRM measurements if the dimension of the probe is below 50 nm. Then, we develop a mathematical algorithm to compute the spatial coordinates of the ionized impurities in the depletion region using a set of scanning microscopy measurements. The proposed numerical algorithm is then applied to extract the (x, y, z) coordinates of ionized impurities in the depletion region in the case of a few semiconductor materials with different doping configuration.;The numerical algorithm developed to solve the above inverse problem is based on the evaluation of doping sensitivity functions of the differential capacitance, which show how sensitive the differential capacitance is to doping variations at different locations. To develop the numerical algorithm we first express the doping sensitivity functions in terms of the Gâteaux derivative of the differential capacitance, use Riesz representation theorem, and then apply a gradient optimization approach to compute the locations of the dopants. The algorithm is verified numerically using 2-D simulations, in which the C-V curves are measured at 3 different locations on the surface of the semiconductor. Although the cases studied in this dissertation are much idealized and, in reality, the C-V measurements are subject to noise and other experimental errors, it is shown that if the differential capacitance is measured precisely, SCM measurements can be potentially used for the "atomistic" profiling of ionized impurities in doped semiconductors.
机译:在本文中,我们研究了使用扫描显微镜(如扫描电容显微镜(SCM)和扫描扩展电阻显微镜(SSRM))对半导体材料进行“原子”掺杂分析的可能性。为此,我们首先分析了纳米级探针对随机掺杂波动(RDF)对SCM和SSRM测量的离散影响,并表明如果探针尺寸为,RDF会显着影响SCM和SSRM测量的差分电容和扩展电阻。 50 nm以下。然后,我们开发了一种数学算法,以使用一组扫描显微镜测量来计算耗尽区中电离杂质的空间坐标。然后,在几种半导体材料掺杂类型不同的情况下,将提出的数值算法应用于耗尽区中电离杂质的(x,y,z)坐标提取。为解决上述反问题而开发的数值算法是基于对差分电容的掺杂灵敏度函数的评估,该函数显示了差分电容对不同位置的掺杂变化的敏感性。要开发数值算法,我们首先用差分电容的Gâteaux导数表示掺杂灵敏度函数,使用Riesz表示定理,然后应用梯度优化方法来计算掺杂剂的位置。该算法使用2-D仿真进行了数值验证,其中C-V曲线是在半导体表面的3个不同位置处测量的。尽管本文研究的案例非常理想,但实际上,CV测量易受噪声和其他实验误差的影响,但事实表明,如果精确测量差分电容,SCM测量可潜在地用于“原子”掺杂半导体中电离杂质的分布图。

著录项

  • 作者

    Aghaei Anvigh, Samira.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Electrical engineering.;Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号