首页> 外文学位 >Optical frequency selective surface design using a GPU accelerated finite element boundary integral method.
【24h】

Optical frequency selective surface design using a GPU accelerated finite element boundary integral method.

机译:使用GPU加速有限元边界积分法的光频率选择表面设计。

获取原文
获取原文并翻译 | 示例

摘要

Periodic metallodielectric frequency selective surface (FSS) designs have historically seen widespread use in the microwave and radio frequency spectra. By scaling the dimensions of an FSS unit cell for use in a nano-fabrication process, these concepts have recently been adapted for use in optical applications as well. While early optical designs have been limited to wellunderstood geometries or optimized pixelated screens, nano-fabrication, lithographic and interconnect technology has progressed to a point where it is possible to fabricate metallic screens of arbitrary geometries featuring curvilinear or even three-dimensional characteristics that are only tens of nanometers wide.;In order to design an FSS featuring such characteristics, it is important to have a robust numerical solver that features triangular elements in purely two-dimensional geometries and prismatic or tetrahedral elements in three-dimensional geometries. In this dissertation, a periodic finite element method code has been developed which features prismatic elements whose top and bottom boundaries are truncated by numerical integration of the boundary integral as opposed to an approximate representation found in a perfectly matched layer. However, since no exact solution exists for the calculation of triangular elements in a boundary integral, this process can be time consuming. To address this, these calculations were optimized for parallelization such that they may be done on a graphics processor, which provides a large increase in computational speed.;Additionally, a simple geometrical representation using a Bezier surface is presented which provides generality with few variables. With a fast numerical solver coupled with a lowvariable geometric representation, a heuristic optimization algorithm has been used to develop several optical designs such as an absorber, a circular polarization filter, a transparent conductive surface and an enhanced, optical modulator.
机译:历史上,周期性的金属电介质频率选择表面(FSS)设计在微波和射频频谱中得到了广泛的应用。通过缩放纳米制造过程中使用的FSS晶胞的尺寸,这些概念最近也适用于光学应用。尽管早期的光学设计仅限于易于理解的几何形状或优化的像素化屏幕,但纳米加工,光刻和互连技术已发展到可以制造具有曲线甚至三维特征的任意几何形状的金属屏幕的程度,为了设计具有这种特性的FSS,重要的是要有一个强大的数值求解器,该求解器的特征在于纯二维几何形状中的三角形元素和三维几何形状中的棱柱或四面体元素。本文开发了一种周期性有限元方法代码,其特征是棱柱形元素的顶部和底部边界通过边界积分的数值积分而被截断,这与在完全匹配层中发现的近似表示相反。但是,由于不存在用于计算边界积分中的三角形元素的精确解,因此此过程可能很耗时。为了解决这个问题,这些计算针对并行化进行了优化,以便可以在图形处理器上完成,从而大大提高了计算速度。此外,还提出了使用Bezier曲面的简单几何表示,该通用性几乎没有变量。结合快速数值求解器和低变量几何表示法,启发式优化算法已用于开发多种光学设计,例如吸收器,圆偏振滤光片,透明导电表面和增强型光学调制器。

著录项

  • 作者

    Ashbach, Jason A.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.;Computer science.;Theoretical physics.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号