首页> 外文学位 >Mechanical characterization of thin film structures using a laser spallation technique.
【24h】

Mechanical characterization of thin film structures using a laser spallation technique.

机译:使用激光剥落技术对薄膜结构进行机械表征。

获取原文
获取原文并翻译 | 示例

摘要

The laser spallation technique has been developed to measure the interface strength between different materials, especially thin film structures. In this work, it is refined and applied to various material systems. With these advances, the laser spallation technique is now fully mature for applications not only to measurement of material interface strength, but also to the study of laser-material interaction, dynamic fracture mechanics, as well as to the measurement of material bulk properties.; In the first part of this work, the laser spallation technique was examined quantitatively for signal processing and stress wavefield recovery. It is shown that the short time Fourier transformation is another appropriate means for recovering the free surface displacement from the acquired optical signal. Two methods have been chosen to recover the stress field inside the sample. When the displacement of the coating's free surface is recorded directly, it is convenient to use a special finite difference strategy. When the free surface displacement is recorded on the bare substrate surface, it is more convenient to use the finite element method to calculate the interface strength.; The application work includes several topics. The first one was the evaluation of the effect of substrate orientation and deposition mode on the interface strength of Nb-sapphire interfaces. The interface strength is higher for the sapphire substrate with prismatic orientation, and RF deposition mode yields higher interface strength than the DC mode. The second application estimated the effect of substrate roughness on the interface strength of Nb-alumina system. The effect of chemical composition of thin films on the interface strength was also investigated.; The final application investigated the dynamic fracture mechanics of thin film structures. The purpose of this chapter is to clarify the controversial topic regarding the limit speed of bimaterial interface crack propagation. We were successful in using the microlithography technique to generate microcracks with controlled geometries between a thin film and its underlying substrate. The sample was mechanically loaded by using a laser generated stress pulse as discussed above. The crack propagation was monitored via a fast response circuit involving micro-wires on top of the cracked sample. The interface crack was observed to propagate at a speed close to the higher Rayleigh wave speed.; Thus, all the necessary quantification techniques have been developed for the laser spallation technique. The application to the measurement of interface strength and dynamic fracture in thin film structures showed that this is a reliable, powerful, and unique technique that has opened up new fields for experimental and theoretical research.
机译:已经开发出激光剥落技术来测量不同材料(尤其是薄膜结构)之间的界面强度。在这项工作中,它被完善并应用于各种材料系统。有了这些进步,激光剥落技术现在已经完全成熟,不仅可以用于测量材料界面强度,还可以用于研究激光与材料的相互作用,动态断裂力学以及材料的松散性能。在这项工作的第一部分中,对激光散裂技术进行了定量检查,以进行信号处理和应力波场恢复。结果表明,短时傅立叶变换是从采集到的光信号中恢复自由表面位移的另一种合适方法。选择了两种方法来恢复样品内部的应力场。当直接记录涂层自由表面的位移时,使用特殊的有限差分策略很方便。当在裸露的基板表面上记录自由表面位移时,使用有限元方法来计算界面强度会更方便。应用程序工作包括几个主题。第一个是评估衬底取向和沉积模式对Nb-蓝宝石界面强度的影响。对于具有棱柱取向的蓝宝石衬底,界面强度更高,并且RF沉积模式比DC模式产生更高的界面强度。第二个应用程序估计了基材粗糙度对Nb-氧化铝系统界面强度的影响。还研究了薄膜的化学组成对界面强度的影响。最终应用程序研究了薄膜结构的动态断裂力学。本章的目的是澄清有关双材料界面裂纹扩展极限速度的争议性话题。我们成功地使用微光刻技术在薄膜及其下层基板之间产生了具有可控几何形状的微裂纹。如上所述,通过使用激光产生的应力脉冲对样品进行机械加载。裂纹的传播是通过快速响应电路进行监测的,该电路包括在裂纹样品顶部的微导线。观察到界面裂纹以接近较高瑞利波速度的速度传播。因此,已经为激光剥落技术开发了所有必要的量化技术。在薄膜结构界面强度和动态断裂测量中的应用表明,这是一种可靠,强大而独特的技术,为实验和理论研究开辟了新领域。

著录项

  • 作者

    Wu, Jianxin.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.; Engineering Materials Science.; Applied Mechanics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 137 p.
  • 总页数 137
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;工程材料学;应用力学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号