首页> 外文学位 >First-order design of mirror systems with no axial symmetry.
【24h】

First-order design of mirror systems with no axial symmetry.

机译:无轴向对称的反射镜系统的一阶设计。

获取原文
获取原文并翻译 | 示例

摘要

All-reflective imaging systems that are asymmetrical and eccentric have the advantage of providing more degrees of freedom to improve image quality. A disadvantage of these asymmetrical imaging systems is that they suffer from asymmetric mapping. This asymmetric mapping manifests itself mainly in the presence of keystone distortion and anamorphism. Due to the increase in degrees of freedom, the complexity of such systems escalates; thus, the designer is confronted with the difficult task of determining optimal starting points.; This work addresses several first-order aspects of the design and characterisation of asymmetrical, all-reflective, aspherical, eccentric imaging systems. In contrast to the work of Stone and Forbes, which is based upon the theory of Hamiltonian optics and includes both the first- and second-order considerations, this work is based upon the theory of collineation. Because of the inherent simplicity of the collinear mapping, which is a projective transformation, we are able to present a simple but certainly not naive way of designing and characterising such asymmetrical all-reflective imaging systems. The simplicity of this proposition has the advantage that we can gain insights into asymmetrical mapping behaviour.; Specifically, we apply the collinear mapping model on all-reflective asymmetrical imaging systems resulting in the description of how the mapping between conjugate planes may be described. First we will define keystone distortion and anamorphism. Then we will introduce and investigate the significance of the Cardinal points and planes, the Scheimpflug condition and the horizon planes and show how they are applied in the designing of imaging systems that are free of both keystone distortion and anamorphism. Having established a first-order layout of the optical system, we will then develop a process for converting the first-order layouts into imaging systems consisting of real aspheric surfaces.
机译:不对称和偏心的全反射成像系统具有提供更多自由度以改善图像质量的优势。这些不对称成像系统的缺点是它们遭受不对称映射的困扰。这种不对称映射主要表现在梯形失真和变形中。由于自由度的增加,这种系统的复杂性不断升级。因此,设计人员面临着确定最佳起点的艰巨任务。这项工作解决了非对称,全反射,非球面,偏心成像系统设计和表征的几个一阶方面。与基于哈密顿光学理论并包括一阶和二阶考虑的斯通和福布斯的工作相反,这项工作是基于归位理论。由于共线映射的固有简单性(这是投影变换),我们能够提供一种简单但肯定不是幼稚的方法来设计和表征这种非对称全反射成像系统。该命题的简单性具有我们可以了解非对称映射行为的优势。具体而言,我们将共线映射模型应用于全反射非对称成像系统,从而得出如何描述共轭平面之间的映射的描述。首先,我们将定义梯形失真和变形。然后,我们将介绍和研究基点和平面,Scheimpflug条件和水平平面的重要性,并展示它们如何在没有梯形失真和变形的成像系统设计中应用。建立了光学系统的一阶布局后,我们将开发一种将一阶布局转换为由真实非球面构成的成像系统的过程。

著录项

  • 作者

    Sigrist, Norbert.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 289 p.
  • 总页数 289
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号