首页> 外文学位 >Extension of the glycoprotein processing capabilities of the Lepidopteran insect cell line Spodoptera frugiperda by metabolic engineering.
【24h】

Extension of the glycoprotein processing capabilities of the Lepidopteran insect cell line Spodoptera frugiperda by metabolic engineering.

机译:通过代谢工程扩展鳞翅目昆虫细胞系斜纹夜蛾(Spodoptera frugiperda)的糖蛋白加工能力。

获取原文
获取原文并翻译 | 示例

摘要

Glycosylation, the addition of carbohydrates to a peptide backbone, is the most extensive co- and posttranslational modification of eukaryotic cells. The glycosylation profile of a recombinant glycoprotein can significantly affect its biological activity. This is particularly important when being used in human therapeutic applications. The baculovirus expression vector system (BEVS), used in conjunction with insect cell hosts, is a popular tool for the expression of heterologous proteins with an excellent track record of producing high levels of biologically active eukaryotic proteins. Insect cells are also capable of glycosylation, but it is generally believed that their N-glycosylation pathway is truncated in comparison with the pathway of mammalian cells. Studies of foreign glycoproteins expressed in insect cells have shown that the N-glycans are oligomannosylated and that insect cells are not capable of synthesizing fully elaborated complex or hybrid N-linked glycans. These results suggest that the requisite processing activities are either absent or present at levels too low to be generally effective.;In this study capillary electrophoresis (CE) was applied in combination with exoglycosidase digestion to analyze the structure of glycans derived from the total protein fraction collected from uninfected Spodoptera frugiperda Sf-9 insect cells. The glycans were analyzed by CE after exoglycosidase digestion through coinjection studies using fluorescently labeled standards. This analysis showed that the glycans were of the oligomannosylated type comigrating between hexasaccharide and undecasaccharide standards.;In the subsequent experiments, the N-glycosylation pathway was metabolically engineered by the addition of b 1,4-galactosyltransferase under the control of an immediate early promoter (ie1 ), thereby extending the glycoprotein processing capabilities of insect cells. The analysis of the total protein fraction of AcMNPV-GalT infected Sf-9 cells, showed that the expression of recombinant b -1,4 galactosyltransferase enabled Sf-9 cells to synthesize galactosylated glycans.;Furthermore, the capability of the BEVS to express biologically active C1INH, a therapeutic glycoprotein, was demonstrated in a 10 L bioreactor. Sf-9 cells were infected with a recombinant baculovirus encoding the full C1INH gene under control of the polyhedrin promoter, resulting in a high yield of biologically active recombinant C1INH.
机译:糖基化,即向肽主链上添加碳水化合物,是真核细胞最广泛的共翻译和翻译后修饰。重组糖蛋白的糖基化谱可显着影响其生物学活性。当用于人类治疗应用时,这尤其重要。杆状病毒表达载体系统(BEVS)与昆虫细胞宿主结合使用,是表达异源蛋白质的流行工具,具有产生高水平生物活性真核蛋白质的良好记录。昆虫细胞也能够糖基化,但是通常认为它们的 N 糖基化途径与哺乳动物细胞的途径相比被截短了。对昆虫细胞中表达的外源糖蛋白的研究表明, N -聚糖是寡聚甘露糖基化的,并且昆虫细胞无法合成完全加工的复杂或杂合的 N -连接的聚糖。这些结果表明所需的加工活性不存在或水平太低而不能普遍有效。在本研究中,毛细管电泳(CE)与外切糖苷酶消化结合使用,分析了总蛋白级分中聚糖的结构收集自未感染的 Spodoptera frugiperda Sf-9昆虫细胞。外切糖苷酶消化后,通过使用荧光标记标准品的共注射研究,通过CE分析了聚糖。该分析表明,聚糖是寡糖甘露糖基化类型的,介于六糖和十一碳糖标准品之间。在随后的实验中,通过添加 <来代谢工程化 N -糖基化途径。 g> b 1,4-半乳糖基转移酶受立即早期启动子( ie1 )的控制,从而扩展了昆虫细胞的糖蛋白加工能力。对AcMNPV-GalT感染的Sf-9细胞总蛋白组分的分析表明,重组 b -1,4半乳糖基转移酶的表达使Sf-9细胞能够合成半乳糖基化的聚糖。此外,在10 L生物反应器中证明了BEVS表达具有生物活性的C1INH(一种治疗性糖蛋白)的能力。在多角体蛋白启动子的控制下,用编码完整C1INH基因的重组杆状病毒感染Sf-9细胞,从而获得了高生物活性的重组C1INH。

著录项

  • 作者

    Wolff, Michael Werner.;

  • 作者单位

    The University of Iowa.;

  • 授予单位 The University of Iowa.;
  • 学科 Biology Cell.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 225 p.
  • 总页数 225
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号