首页> 外文学位 >Modeling, Analysis, and Simulation of Adsorption in Functionalized Membranes.
【24h】

Modeling, Analysis, and Simulation of Adsorption in Functionalized Membranes.

机译:官能化膜吸附的建模,分析和模拟。

获取原文
获取原文并翻译 | 示例

摘要

The emergence of biopharmaceuticals, and particularly therapeutic proteins, as a leading way to manage chronic diseases in humans has created a need for technologies that deliver purified products efficiently and quickly. Towards this end, there has been a significant amount of research on development of porous membranes used in chromatographic bioseparations. In this work, we focus on high-capacity multimodal membranes developed by Husson and colleagues in the Department of Chemical and Biomolecular Engineering at Clemson University.;Chromatographic performance of such membranes, particularly the adsorption capabilities of the membranes, depends of a large number of variables making it unrealistic to scan the available options and determine the conditions resulting in the best performance experimentally. Consequently, the goal of this work is to develop a modeling framework capable of describing the process under continuous flow conditions and software tools capable of simulating the protein chromatography process under the effect of complex adsorption relationships.;In this work, we consider the reactive transport, or advection-diffusion-reaction, problem to model the chromatography process. We focus on the case of highly advective flows as one of the advantages of using membranes in chromatography is the capacity to maintain high protein binding capacity at high flow rates. Toward this end, we utilize a streamline upwind Petrov-Galerkin (SUPG) finite element method to numerically solve the advection-dominated advection-diffusion-reaction equation for porous media.;The complicating feature of the problem arises from modeling the adsorption reaction. The most accurate, thermodynamically consistent model, or isotherm, for multimodal adsorption, recently developed by Nfor and colleagues, is highly nonlinear and implicitly defined. Even the next best model, Langmuir's isotherm, while not implicitly defined is still nonlinear. As such we develop and analyze discretization methods incorporating nonlinear, potentially implicit, adsorption isotherm models.;To gain insight into the advection-diffusion-reaction problem, we begin by analyzing the SUPG formulation for the steady state case of the advection-diffusion equation. We also analyze the time-dependent linear cases incorporating constant and linear adsorption models. Although the constant and linear adsorption models do not represent realistic adsorption relationships, the linear analysis serves as a template for the nonlinear analysis.;When incorporating nonlinear adsorption, we consider two cases: adsorption with an explicit representation as in Langmuir's isotherm and adsorption with an implicit equation as in Nfor's isotherm. In the case of an explicit adsorption relationship, three different formulations are analyzed: a time-integrated mixed methods formulation, a time-integrated SUPG formulation, and a fully implicit SUPG formulation. For the implicit adsorption relationship, a simple formulation is proposed which not only deals with the implicit definition of the isotherm but also deals with the nonlinearity: the right hand side of the isotherm relationship is evaluated at the previous time step. As expected, the solvability and stability for this relationship are all shown to have a requirement on the time step size.;We provide numerical validation for each of the a priori error estimates. We also compare results of our algorithm with data obtained from laboratory experiments. To improve the accuracy of the numerical simulations, we incorporate non-instantaneous adsorption, considering both constant and transient adsorption rates. Additionally, we numerically investigate the effects of varying velocity profiles by comparing results from simulations involving five different profiles.
机译:作为治疗人类慢性疾病的主要方法,生物药物,尤其是治疗性蛋白质的出现,引起了对有效,快速交付纯化产品的技术的需求。为此,在色谱生物分离中使用的多孔膜的开发方面已进行了大量研究。在这项工作中,我们重点研究了克莱姆森大学化学与生物分子工程系的Husson及其同事开发的高容量多峰膜;此类膜的色谱性能,尤其是膜的吸附能力取决于大量的变量,从而无法扫描可用的选项并确定导致实验性最佳性能的条件。因此,这项工作的目标是开发一个能够描述连续流动条件下的过程的建模框架,以及能够在复杂吸附关系的影响下模拟蛋白质色谱过程的软件工具。或对流扩散反应,这是对色谱过程进行建模的问题。我们关注高度对流流动的情况,因为在色谱中使用膜的优势之一是能够在高流速下保持高蛋白结合能力。为此,我们利用流线型迎风Petrov-Galerkin(SUPG)有限元方法对多孔介质的以对流为主的对流扩散反应方程进行数值求解。问题的复杂之处在于对吸附反应的建模。 Nfor及其同事最近开发的用于多峰吸附的最准确,热力学一致的模型或等温线是高度非线性的并且隐式定义的。即使不是最佳模型,Langmuir的等温线也没有被非线性定义。因此,我们开发和分析了包含非线性,潜在隐式吸附等温线模型的离散化方法。;为了深入了解对流扩散反应问题,我们首先分析了对流扩散方程稳态情况下的SUPG公式。我们还分析了包含恒定和线性吸附模型的时变线性情况。尽管常数和线性吸附模型不能代表实际的吸附关系,但线性分析可作为非线性分析的模板。当合并非线性吸附时,我们考虑两种情况:在Langmuir等温线中具有明确表示形式的吸附和在Langmuir等温线中的吸附。隐式方程式,如Nfor等温线。在显式吸附关系的情况下,将分析三种不同的配方:时间积分混合方法配方,时间积分SUPG配方和完全隐式SUPG配方。对于隐式吸附关系,提出了一种简单的公式,该公式不仅处理等温线的隐式定义,而且还处理非线性:等温线关系的右手边在上一个时间步进行评估。不出所料,这种关系的可解性和稳定性都显示出对时间步长的要求。我们为每个先验误差估计提供数值验证。我们还将比较我们算法的结果和从实验室实验获得的数据。为了提高数值模拟的准确性,我们考虑了恒定和瞬时吸附速率,并入了非瞬时吸附。此外,我们通过比较涉及五个不同剖面的模拟结果,以数值方式研究了不同速度剖面的影响。

著录项

  • 作者

    Wilson, Anastasia Bridner.;

  • 作者单位

    Clemson University.;

  • 授予单位 Clemson University.;
  • 学科 Applied mathematics.;Mathematics.;Chemical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 238 p.
  • 总页数 238
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号