首页> 外文学位 >Novel methodologies for integrated identification and robust process control.
【24h】

Novel methodologies for integrated identification and robust process control.

机译:用于集成识别和强大过程控制的新颖方法。

获取原文
获取原文并翻译 | 示例

摘要

Modern approaches for designing robust control systems require: selection of a nominal dynamic model of the process, characterization of the uncertainty between the plant, and the model, (in certain cases) a model reduction procedure, and finally an algorithm that uses plant uncertainty and user-desired performance specifications for design and analysis of robust controllers. In this dissertation, three problems which integrate these four steps for designing robust decentralized Proportional-Integral-Derivative (PID) and multivariable Model Predictive Controllers (MPC) are developed. The problems examined are: Integrated identification and PID control design methodology for Single-Input Single-Output (SISO) systems, Control-relevant identification of multivariable systems, and finally integrated multivariable identification and robust control using loop shaping ideas. In all these methodologies one begins with dynamic modeling from plant data and concludes with parameter settings for high performance PID controllers. The logical sequence of the steps involved in these methodologies are: plant-friendly input signal design and execution, identification of the nominal model plus the uncertainty bounds (plant-set), nominal performance bounds estimation, control-relevant parameter estimation or control-relevant model reduction, and PID or Model Predictive Control (MPC) controller design. In: the first step, plant-friendly input signals such as Pseudo Random Binary Sequence (PRBS) and Schroeder-phased are designed using a priori time constant information. In this research, systematic guidelines to design these signals are presented. Secondly, a nominal model along with uncertainty bounds on each element of the transfer function matrix are identified using three different identification procedures: Zhu's Asymptotic method, Bayard's Frequency Domain method and the Coprime Uncertainty Estimation method. The nominal model along with element-by-element bounds are then used in a Structured Singular Value framework to derive robust performance and stability bounds. These bounds are then used to choose loop shapes required for tuning PID controllers. Finally, the designed controllers are validated by closed-loop simulations as well as by applying the Structured Singular Value (μ) theorem. Practical applicability of these integrated methodologies are shown by applying them to meaningful industrial case studies such as the Shell Heavy Oil Fractionator problem, the Weishedel-McAvoy high-purity distillation column and a paper machine simulator developed by Honeywell-Measurex.
机译:设计鲁棒控制系统的现代方法要求:选择过程的标称动态模型,表征工厂与模型之间的不确定性,(在某些情况下)模型简化程序,最后使用工厂不确定性的算法用户期望的性能指标,用于设计和分析鲁棒控制器。本文提出了将这四个步骤集成在一起的三个问题,以设计鲁棒的分散比例积分微分(PID)和多变量模型预测控制器(MPC)。研究的问题包括:用于单输入单输出(SISO)系统的集成识别和PID控制设计方法,多变量系统的与控制相关的识别,以及最后使用环路整形思想集成多变量识别和鲁棒控制。在所有这些方法中,首先要从工厂数据进行动态建模,最后是针对高性能PID控制器的参数设置。这些方法中涉及的步骤的逻辑顺序是:工厂友好的输入信号设计和执行,标称模型的识别以及不确定性范围(工厂设定),标称性能范围估计,与控制有关的参数估计或与控制有关的模型简化以及PID或模型预测控制(MPC)控制器设计。在第一步中,使用先验时间常数信息设计植物友好输入信号,例如伪随机二进制序列(PRBS)和Schroeder阶段化。在这项研究中,提出了设计这些信号的系统指南。其次,使用三种不同的识别程序来识别名义模型以及传递函数矩阵的每个元素上的不确定性界限:Zhu的渐近法,Bayard的频域法和Coprime不确定度估计法。然后,在结构化奇异值框架中使用标称模型以及逐个元素的边界来导出鲁棒的性能和稳定性边界。然后,将这些边界用于选择调整PID控制器所需的回路形状。最后,通过闭环仿真以及应用结构奇异值(μ)定理验证了设计的控制器。通过将这些集成方法应用于有意义的工业案例研究(例如壳牌重油分馏塔问题,Weishedel-McAvoy高纯度蒸馏塔和霍尼韦尔-Measurex开发的造纸机模拟器),表明了这些集成方法的实际适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号