首页> 外文学位 >Role of the Indian and Pacific oceans in the Indian summer monsoon variability.
【24h】

Role of the Indian and Pacific oceans in the Indian summer monsoon variability.

机译:印度洋和太平洋在印度夏季风变化中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The role of the Indian and Pacific sea surface temperature (SST) variability in the intraseasonal and interannual variability of the Indian summer monsoon rainfall is examined by performing a set of regionally coupled experiments with the Climate Forecast System (CFS), the latest and operational coupled general circulation model (CGCM) developed at the National Centers for Environmental Prediction (NCEP). The intraseasonal and interannual variability are studied by isolating oscillatory and persistent signals, respectively, from the unfiltered daily rainfall anomalies using multi-channel singular spectrum analysis (MSSA). This technique identifies nonlinear oscillations, its variance and period without preconditioning the data with a filter and also helps to separate the intraseasonal and low frequency climate signals from the daily variability.;It is found that, although the model has large amount of daily variance in rainfall, the combined variance of coherently propagating intraseasonal oscillations is only about 7% while the corresponding number in the observations is 11%. The model has three intraseasonal oscillations with periods around 106, 57 and 30 days. The 106-day mode has a characteristic large-scale pattern extending from the Arabian Sea to the West Pacific with northward and eastward propagations. These features are similar to the northeastward propagating 45-day mode found in the observations except for the longer period. The 57-day mode is more dominant in the region, 60°E-100°E and is strictly northward-propagating. The 30-day mode appears to be equivalent to the northwestward propagating oscillation in the observations. The dominant low frequency persistent signal in the region is due to the El Nino-Southern Oscillation (ENSO). The ENSO-related rainfall anomalies, however fail to penetrate into the Extended Indian Monsoon Rainfall (EIMR) region, and therefore, the ENSO-monsoon relationship in the model is weak.;Regionally coupled simulations of the CFS have revealed that the northeastward propagating 106-day mode exists in the model with weak amplitude and reduced variance even when the air-sea interaction over the Indian Ocean is suppressed. However, this mode was not obtained when the Indian Ocean SST variability is reduced to climatology. The spatial structure and propagation of the 106-day mode appear to be unaffected by the Pacific SST variability; i.e., a simulation with climatological SST in the Pacific reproduced this mode. The 30-day northwestward propagating mode showed little change with respect to the Indian Ocean SST, but is dependent on the air-sea interactions over the west Pacific.;Simulations using prescribed SST in the Indian Ocean showed that the spatial structure of the ENSO mode in the Indian Ocean is dependent on the air-sea interaction in that region. It is argued that the western Indian Ocean in this model is over-sensitive to atmospheric momentum fluxes and therefore cools down quickly in response to the ENSO-induced circulation anomalies. Further, this process creates a dipole pattern with cool (warm) western and warm (cool) eastern Indian Ocean during a La Nina (El Nino) event. This dipole prevents the ENSO anomalies from reaching the EIMR region and causes the incorrect ENSO-monsoon relationship. It is also found that such a dipole pattern, although with less variance is present even in the absence of the ENSO variability. The monsoon rainfall variability in the absence of the ENSO could be dictated by internal dynamics in this model.
机译:印度和太平洋海表温度(SST)的变化在印度夏季季风降水的季节内和年际变化中的作用通过与气候预报系统(CFS)进行的一系列区域耦合实验进行了检验国家环境预测中心(NCEP)开发了通用循环模型(CGCM)。通过使用多通道奇异频谱分析(MSSA)分别从未过滤的每日降雨异常中分离出振荡信号和持续信号,研究了季节内和年际变化。该技术无需使用滤波器对数据进行预处理就可以识别非线性振荡,其方差和周期,还有助于将季节内和低频气候信号与日变化量分开。;发现,尽管该模型具有大量的日变化量降雨时,相干传播的季节内振荡的组合方差只有大约7%,而观测中的相应数字是11%。该模型具有三个季节内振荡,周期约为106、57和30天。 106天模式具有特征性的大规模模式,从阿拉伯海延伸到西太平洋,向北和向东传播。这些特征与观测中发现的向东北传播的45天模式相似,只是周期较长。 57天模式在该地区(60°E-100°E)更为占主导地位,并且严格向北传播。 30天模式似乎相当于观测中的西北传播振荡。该区域主要的低频持续信号归因于厄尔尼诺-南方涛动(ENSO)。然而,与ENSO相关的降雨异常未能渗透到印度季风扩展降雨(EIMR)区域,因此该模型中的ENSO与季风关系较弱。CFS的区域耦合模拟表明,东北向传播106即使抑制了印度洋上的海-气相互作用,该模式也存在振幅较弱且方差减小的日模式。但是,当印度洋海表温度的变异性降低到气候学时,就无法获得这种模式。 106天模式的空间结构和传播似乎不受太平洋海表温度变化的影响。即,在太平洋地区采用气候SST进行的模拟再现了这种模式。西北向30天的传播模式相对于印度洋海表温度变化不大,但取决于西太平洋上的海-气相互作用。;在印度洋使用规定的海表温度进行的模拟表明,ENSO模式的空间结构印度洋的海平面依赖于该区域的海海互动。有人认为,该模型中的印度洋西部地区对大气动量通量过于敏感,因此会因ENSO引起的环流异常而迅速降温。此外,在拉尼娜(El Nino)事件期间,该过程会在印度洋的凉爽(温暖)西部和温暖的(凉爽)东部形成偶极子模式。该偶极子会阻止ENSO异常到达EIMR区域,并导致ENSO与季风之间的关系不正确。还发现,即使在没有ENSO变化性的情况下,也存在这样的偶极子图形,尽管具有较小的变化。在没有ENSO的情况下,季风降雨量的变化可能由该模型的内部动力学决定。

著录项

  • 作者

    Achuthavarier, Deepthi.;

  • 作者单位

    George Mason University.;

  • 授予单位 George Mason University.;
  • 学科 Physical Oceanography.;Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 海洋物理学;
  • 关键词

  • 入库时间 2022-08-17 11:37:39

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号