首页> 外文学位 >Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor.
【24h】

Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor.

机译:大西洋中部走廊上的区域气溶胶辐射和水文效应。

获取原文
获取原文并翻译 | 示例

摘要

A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007.;Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating. Calculation of radiative flux and heating rates profiles, which are constrained by HUBS observations, were performed by the 1-D Fu-Liou radiative transfer model to investigate the effect of polluted and pristine aerosol conditions on the surface energy budget and hydrological cycle. For HUBS the surface forcing (--14.2 W/m2) and atmospheric forcing (9.9 W/m2) were significantly larger than the TOA (--4.3 W/m2) radiative forcing. Associated aerosol heating, as well as reduced surface insolation, may lead to increasing near surface static stability, and reduced vertical transport of moisture into the atmospheric boundary layer, and over time, a possible spin-down of the hydrological cycle.;It is shown that HUBS provides an ideal opportunity for improving measurements and datasets, thus allowing for both the study and understanding of aerosol impacts on the climate system. Further, results show that in order to provide reference quality data and constrain aerosol radiative effects over land, ground-based research sites must conform to HUBS standards of: (1) instrumentation (e.g. passive and active sensors); (2) operational protocols (e.g. calibration and routine cleaning); (3) rigorous cloud screening protocols; and (4) incorporation of ARM QC and modified FFA algorithms. HUBS surface measurements provides the reference quality data necessary and capability required to help enhance measurements and constrain current uncertainties in estimates of aerosol direct effects over land. Incorporating a combined technique of both active and passive instruments reduced the direct radiative forcing estimates by ∼82 W/m2. The analysis of aerosol effects over HUBS helps continue in bridging the gap of applying measurements for improvement of climate simulations by generating observational products, which describes aerosol and radiation field characteristics in detail.
机译:需要对气溶胶对地球能源预算的直接,间接和半直接影响进行彻底评估,以更好地了解气候并估算其未来的变化。在由NOAA-霍华德大学大气中心开发的最新站点上进行了晴空表面宽带(测量和建模)辐照度,光谱气溶胶光学深度,加热速率曲线和非辐射通量测量科学(NCAS)计划,可提供对气溶胶辐射的大气表面相互作用的最佳估计。由能源部(DOE)大气辐射测量(ARM)计划开发的方法应用于:(1)暂时量化区域性气溶胶强迫,(2)得出描述气溶胶光学深度与归一化扩散比之间关系的经验方程, (3)评估气溶胶对大气加热的影响,以及(4)评估气溶胶强迫的影响如何可能减少潜感通量和感性通量。在2005年,2006年和2007年的5月至9月期间获得了测量值。大气气溶胶是影响地球气候和大气辐射过程的主要不确定性之一。今天,气溶胶浓度的增加直接,间接和半直接影响地球的能源预算(即,冷却地表和加热大气),从而助长了气候变化。霍华德大学贝尔茨维尔校区(HUBS)的平均归一化气溶胶辐射强迫随着时间的流逝而遭受了更大的损失,因为观测结果表明,从2005年的--0.9分别降至2006年和2007年的--3.1和--3.4 W / m2,平均净辐照度在所考虑的时期内估计的平均归一化气溶胶辐射强迫为--2.5 W / m2。表面日晒的减少是由于在此期间与增加的气溶胶负荷v有关的散射和吸收增加,从而促进了表面冷却和大气加热。由HUBS观测值约束的辐射通量和加热速率分布图的计算是通过一维Fu-Liou辐射传递模型进行的,以研究污染和原始气溶胶条件对表面能收支和水文循环的影响。对于HUBS,表面强迫(--14.2 W / m2)和大气强迫(9.9 W / m2)显着大于TOA(--4.3 W / m2)辐射强迫。伴随的气溶胶加热以及减少的表面日射量,可能导致近地表静态稳定性增加,并且减少了水分向大气边界层的垂直输送,并且随着时间的流逝,水文循环可能会下降。 HUBS为改善测量和数据集提供了理想的机会,因此可以研究和了解气溶胶对气候系统的影响。而且,结果表明,为了提供参考质量数据并限制陆地上的气溶胶辐射效应,地面研究站点必须符合HUBS的标准:(1)仪器(例如无源和有源传感器); (2)操作规程(例如校准和例行清洁); (3)严格的云筛选协议; (4)纳入ARM QC和改进的FFA算法。 HUBS表面测量提供了必要的参考质量数据和所需的能力,以帮助增强测量并限制当前对陆地气溶胶直接影响的估计中的不确定性。结合有源和无源仪器的组合技术可将直接辐射强迫估算值降低约82 W / m2。对HUBS上的气溶胶影响的分析通过生成观测产品来详细弥合气溶胶和辐射场的特征,从而有助于弥合应用测量数据来改善气候模拟的差距。

著录项

  • 作者

    Creekmore, Torreon N.;

  • 作者单位

    Howard University.;

  • 授予单位 Howard University.;
  • 学科 Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 182 p.
  • 总页数 182
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号