首页> 外文学位 >Computer methods for enhanced sampling and global minimization for biomolecular systems.
【24h】

Computer methods for enhanced sampling and global minimization for biomolecular systems.

机译:用于增强生物分子系统采样和全局最小化的计算机方法。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents and applies novel computational techniques applicable for calculating thermodynamic properties of biomolecules and predicting their most probable conformations by isolating low-lying minima of their energy functions.; The first category of methods set forth addresses the problem of "broken ergodicity," shared by a large class of condensed-phase systems such as spin glasses, molecular clusters and proteins. Two novel computational methods, designed to enhance the search of the configurational space, are presented. One method is based on probability density functions derived in a generalization of the statistical mechanics treatment of Tsallis. The other employs a local Monte Carlo sampling scheme together with large global moves in the configurational space using displacement vectors that connect local potential energy minima.; The second category of computational methods is used to find the global minimum of the potential energy function of a system composed of many interacting atoms. One of the most important problems in contemporary molecular biology, protein folding, can be cast in terms of global minimization. Two approaches to global minimization are presented. In the first, a simulated annealing protocol is used, generalized to the case of a system obeying the rules of Tsallis statistics. In the second, a smoothing integral transformation with a cubic kernel is applied to the potential energy hypersurface, with the advantages over similar smoothing methods that the derivatives of the smoothed potential are simple finite-difference formulas and that no approximations to the potential are needed.; For each computational method developed, applications to systems such as atomic clusters, spin systems and peptides are presented. The effectiveness of the conformational sampling and rapid isolation of low-lying energy minima is shown and the success of each method is compared to that of pre-existing algorithms.
机译:本文提出并应用了新颖的计算技术,该技术可用于计算生物分子的热力学性质,并通过隔离其能量函数的最低极小值来预测其最可能的构象。提出的第一类方法解决了“破碎遍历性”的问题,这是一大类冷凝相系统(如旋转玻璃,分子簇和蛋白质)所共有的。提出了两种新颖的计算方法,旨在增强对配置空间的搜索。一种方法是基于对Tsallis进行统计力学处理的概括中得出的概率密度函数。另一种方法是使用局部蒙特卡洛采样方案,并使用连接局部势能极小值的位移矢量在配置空间中进行较大的全局运动。第二类计算方法用于查找由许多相互作用的原子组成的系统的势能函数的全局最小值。蛋白质折叠是当代分子生物学中最重要的问题之一,可以从全局最小化的角度来考虑。提出了两种全局最小化方法。首先,使用模拟退火协议,将其推广到系统遵循Tsallis统计规则的情况。在第二种方法中,将具有三次核的平滑积分变换应用于势能超曲面,与类似的平滑方法相比,其优势在于,平滑势的导数是简单的有限差分公式,并且不需要势的近似值。 ;对于开发的每种计算方法,都介绍了对诸如原子团簇,自旋系统和肽等系统的应用。证明了构象采样和快速隔离低能量的最小值的有效性,并将每种方法的成功与现有算法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号