首页> 外文学位 >A study of on-state conduction in the silicon carbide power DIMOS device.
【24h】

A study of on-state conduction in the silicon carbide power DIMOS device.

机译:碳化硅功率DIMOS器件的导通状态研究。

获取原文
获取原文并翻译 | 示例

摘要

SiC is a wide bandgap semiconductor with thermal conductivities and breakdown field strength significantly higher than in silicon. These superior material properties translate into much improved power switching device performance at elevated temperature and power levels. However, the potential of this material is yet to be fully exploited due to immature processing technology.; This dissertation is concerned with the development of a low thermal budget process technology for the fabrication of the SiC power DIMOS (Double Implanted MOSFET). The process sequence is aimed at obtaining improved conduction in the on-state of the DIMOS device. The use of aluminum as the p-well dopant in the SiC DIMOS is shown to be beneficial to improving the on-state conduction through the minimization of step-bunching. Performance comparisons for the DIMOS on 4H and 6H-SiC indicate that the surface of implanted SiC is the cause for the degraded conduction in these devices. The surface disorder is higher in the 4H-SiC polytype than in 6H-SiC.; The specific on-resistance, Ron,sp , has been characterized and modeled in the case of the 6H-SiC DIMOS devices. An Ron,sp of 42 m W -cm2 has been measured on our DIMOS Lch=2 mm,CellPitch=32m m devices which received nitrogen “spacer” implants to help eliminate the JFET pinch resistance. The Ron,sp values for all the devices exhibit a positive temperature coefficient thereby making the devices suitable for paralleling for high current applications.; The dissertation also deals with the modeling of carrier transport at the surface of implanted SiC in order to explain the rounded ID-VGS characteristic and the stretched out transconductance observed in SiC devices on implanted regions. A model based on the existence of bandtail states, which originate from the native disorder on SiC surfaces, is developed to account for the MOSFET conduction behavior on SiC implanted surfaces.; In conventional MOS theory, the electric field influence on the inversion charge is derived neglecting the effect of the interface trapped charge. However, the model developed in this dissertation indicates a lowering of the effective vertical field experienced by the inversion layer electrons in the presence of a large amount of interface trapped charge in bandtail states. The model successfully explains the relative insensitivity of the ‘apparent’ surface mobility to gate bias observed in the ion-implanted SiC MOSFETs.; Numerical simulations are used to illustrate the various effects that a bandtail state distribution has on the MOSFET conduction characteristics. The model is then used successfully to fit the observed experimental data with a characteristic bandtail decay energy parameter of 100 meV for inversion mode devices in 6H-SiC. A modified mobility extraction technique using lateral MOSFETs with varying channel lengths, which can take into account gate voltage dependent series resistances, has been developed to extract ‘apparent’ surface mobilities on SiC at various gate biases and temperatures. We have measured gate bias independent room temperature mobility values around 50 cm2/Vs for inversion mode 6H-SiC devices for a substrate doping of 5 × 1016 cm−3, representing almost an order of magnitude higher values when compared to 4H-SiC. A strong correlation, predicted by our model, is indeed observed between the observed surface mobilities and the effective threshold voltages.
机译:SiC是一种宽带隙半导体,其导热率和击穿场强明显高于硅。这些优越的材料性能可在高温和高功率水平下大大改善功率开关器件的性能。然而,由于不成熟的加工技术,这种材料的潜力尚未得到充分利用。本论文涉及用于制造SiC功率DIMOS(双注入MOSFET)的低热预算工艺技术的发展。该处理序列旨在在DIMOS器件的导通状态下获得改善的传导。在SiC DIMOS中,将铝用作p阱掺杂剂已显示出有助于通过最小化分步成束来改善导通状态的传导。 DIMOS在4H和6H-SiC上的性能比较表明,植入的SiC表面是这些器件中导电性能下降的原因。 4H-SiC多晶型的表面无序性高于6H-SiC。表征了特定的导通电阻 R on,sp 以6H-SiC DIMOS器件为模型。 R on,sp 为42 m < g> W -cm 2 已在我们的DIMOS L < inf> ch = 2 m m,单元格 Pitch = 32 m m 接收了氮“ spacer”的设备植入物有助于消除JFET的抗捏性。所有设备的 R on,sp 值均显示正温度系数从而使器件适合于大电流应用的并联。本文还研究了注入的SiC表面的载流子传输模型,以解释圆形的 I D - V GS 特性和在植入区域的SiC器件中观察到的延伸跨导。建立了基于带隙态存在的模型,该带隙态起源于SiC表面的自然无序,以解释SiC注入表面上MOSFET的导电行为。在传统的MOS理论中,忽略了界面俘获电荷的影响,就得出了电场对反转电荷的影响。然而,本文开发的模型表明,在带隙态存在大量界面俘获电荷的情况下,反型层电子所经历的有效垂直场降低。该模型成功地解释了在离子注入的SiC MOSFET中观察到的“表观”表面迁移率对栅极偏置的相对不敏感性。数值模拟用于说明带尾态分布对MOSFET导通特性的各种影响。然后,该模型已成功用于6H-SiC中的反转模式器件,以100 meV的特征带尾衰减能量参数拟合观察到的实验数据。已经开发出一种改进的迁移率提取技术,该技术使用具有可变沟道长度的横向MOSFET来考虑栅极电压相关的串联电阻,从而可以在各种栅极偏置和温度下提取SiC上的“表观”表面迁移率。对于衬底掺杂为5×10 16 cm 的反转模式6H-SiC器件,我们已经测量了与栅极偏置无关的室温迁移率值在50 cm 2 / Vs附近。 -3 ,与4H-SiC相比,其值几乎高出一个数量级。实际上,在我们观察到的表面迁移率和有效阈值电压之间确实观察到了由我们的模型预测的强相关性。

著录项

  • 作者单位

    Lehigh University.;

  • 授予单位 Lehigh University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 152 p.
  • 总页数 152
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:48:03

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号