首页> 外文学位 >Investigation and compensation of periodic nonlinearities in heterodyne interferometry.
【24h】

Investigation and compensation of periodic nonlinearities in heterodyne interferometry.

机译:外差干涉测量法中周期性非线性的研究和补偿。

获取原文
获取原文并翻译 | 示例

摘要

Polarization encoded heterodyne interferometry forms the basis of measurement and control in numerous high precision applications. While electronic fringe sub-division has led to sub-nanometer resolution, the accuracy of these systems is limited by subtle cyclical nonlinearities to approximately 5 nm p-p. This dissertation concerns itself with the modeling, experimental measurement and compensation of these cyclical errors. Analytical models are developed for a two-retroreflector displacement measuring interferometer. These models explore the contributions of various error sources (input beam rotation, ellipticity, non-orthogonality, analyzer alignment and beamsplitter leakage) to both the first and second harmonic nonlinearity. Interactions between input beam errors (rotation and ellipticity) and beamsplitter leakage are investigated and used as a basis for developing compensation strategies. Two experimental techniques are described---pressure and velocity scanning. The technique of pressure scanning is used to measure the nonlinearities and experimentally validate the cancellation of the second-harmonic nonlinearity, while velocity scanning is used to validate the cancellation of the first-harmonic nonlinearity. It is shown that the contribution of input beam ellipticity and rotational misalignment to the first-harmonic can be minimized by aligning the analyzer at 45°. It is further shown that the error contribution due to input beam errors may be used to cancel the contribution due to beamsplitter leakage. Compensation strategies are verified experimentally, and cancellation of the first and second harmonic errors to the 0.03 nm and 0.5 nm p-p level respectively are demonstrated.
机译:极化编码的外差干涉测量法是众多高精度应用中测量和控制的基础。尽管电子条纹细分已导致亚纳米分辨率,但这些系统的精度受到微妙的周期性非线性(约5 nm p-p)的限制。本文主要涉及这些周期性误差的建模,实验测量和补偿。针对两反射器位移测量干涉仪开发了分析模型。这些模型探索了各种误差源(输入光束旋转,椭圆度,非正交性,分析仪对准和分束器泄漏)对一次和二次谐波非线性的贡献。研究了输入光束误差(旋转和椭圆度)与分束器泄漏之间的相互作用,并将其用作制定补偿策略的基础。描述了两种实验技术-压力扫描和速度扫描。压力扫描技术用于测量非线性,并通过实验验证二次谐波非线性的消除,而速度扫描技术用于验证一次谐波非线性的消除。结果表明,通过将检偏器对准45°,可以使输入光束的椭圆度和旋转失准对一次谐波的影响最小。进一步示出,由于输入光束误差引起的误差贡献可用于抵消由于分束器泄漏引起的贡献。通过实验验证了补偿策略,并证明了将一次和二次谐波误差分别消除到0.03 nm和0.5 nm p-p水平。

著录项

  • 作者

    Badami, Vivek Gopal.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Physics Optics.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 140 p.
  • 总页数 140
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号