首页> 外文学位 >Extra cellular matrix synthesis and tissue mechanics: Vascular remodeling, mechanism and disease.
【24h】

Extra cellular matrix synthesis and tissue mechanics: Vascular remodeling, mechanism and disease.

机译:细胞外基质合成和组织力学:血管重塑,机制和疾病。

获取原文
获取原文并翻译 | 示例

摘要

Vascular grafts were engineered using Small Intestinal Submucosa (SIS)-fibrin hybrid scaffold and implanted interpositionally into the arterial circulation of an ovine model. We sought to demonstrate implantability of SIS-Fibrin based grafts; examine the remodeling; and determine whether the presence of vascular cells in the medial wall was necessary for cellular infiltration from the host and successful remodeling of the implants. We observed no occlusions or anastomotic complications in 18 animals that received these grafts. Notably, the grafts exhibited unprecedented levels of host cell infiltration that was not limited to the anastomotic sites but occurred through the lumen as well as the extramural side, leading to uniform cell distribution. Incoming cells remodeled the extracellular matrix and matured into functional smooth muscle cells as evidenced by expression of myogenic markers and development of vascular reactivity. Although these results demonstrate that SIS-Fibrin grafts can be successfully implanted into the arterial circulation of a clinically relevant animal model, the mechanism why which cell-cell contacts control ECM synthesis was not understood during graft remodeling. Cell- cell contacts through Cadherin-11 (CDH11) regulates collagen and elastin synthesis both affecting the mechanical properties and contractile function of animal tissues. Using a Cdh11 null mouse model, we observed a significant reduction in the mechanical properties of Cdh11-/- as compared to WT (wild type) mouse tissues, such as aorta, bladder and skin. The deterioration of mechanical properties was accompanied by reduced collagen and elastin content in Cdh11-/- mouse tissues as well as cells in culture. Similarly, knocking down CDH11 abolished collagen and elastin synthesis in human cells, and consequently reduced their ability to generate force. Conversely, engagement of CDH11 through homophilic interactions, led to swift activation of the TGF-beta and ROCK pathways as evidenced by phosphorylation of downstream effectors. Subsequently, activation of key transcription factors, MRTF-A and MYOCD, led to significant upregulation of collagen and elastin genes. Taken together, our results demonstrate a novel role of adherens junctions in regulating ECM synthesis with implications for many important biological processes including maintenance of tissue integrity, wound healing and tissue regeneration.
机译:使用小肠黏膜下层(SIS)-纤维蛋白混合支架对血管移植物进行工程改造,并将其间插植入绵羊模型的动脉循环中。我们试图证明基于SIS-纤维蛋白的移植物的可植入性。检查重塑;并确定内侧壁中是否存在血管细胞对于从宿主细胞浸润和成功重建植入物是否必要。我们在接受这些移植物的18只动物中未观察到闭塞或吻合并发症。值得注意的是,移植物表现出前所未有的宿主细胞浸润水平,不仅限于吻合部位,而且通过管腔以及壁外一侧发生,导致均匀的细胞分布。进入的细胞重塑细胞外基质并成熟为功能性平滑肌细胞,这由成肌标志物的表达和血管反应性的发展所证明。尽管这些结果表明,SIS-纤维蛋白移植物可以成功地植入临床相关动物模型的动脉循环中,但是在移植物重塑过程中,为什么细胞与细胞接触控制ECM合成的机制尚不清楚。通过Cadherin-11(CDH11)进行的细胞间接触可调节胶原蛋白和弹性蛋白的合成,从而影响动物组织的机械性能和收缩功能。使用Cdh11空小鼠模型,我们观察到与WT(野生型)小鼠组织(如主动脉,膀胱和皮肤)相比,Cdh11-/-的机械性能显着降低。机械性能的恶化伴随着Cdh11-/-小鼠组织以及培养细胞中胶原蛋白和弹性蛋白含量的降低。同样,敲除CDH11会破坏人体细胞中的胶原蛋白和弹性蛋白合成,从而降低其产生力的能力。相反,CDH11通过同源相互作用的参与导致TGF-β和ROCK途径的迅速激活,下游效应物的磷酸化证明了这一点。随后,关键转录因子MRTF-A和MYOCD的激活导致胶原蛋白和弹性蛋白基因的显着上调。综上所述,我们的结果表明粘附连接在调节ECM合成中具有新颖作用,对许多重要的生物学过程都具有重要意义,包括维持组织完整性,伤口愈合和组织再生。

著录项

  • 作者

    Row, Sindhu.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Chemical engineering.;Biomedical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 155 p.
  • 总页数 155
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号