首页> 外文学位 >First principles simulations of liquid semiconductors: Electronic, structural and dynamic properties.
【24h】

First principles simulations of liquid semiconductors: Electronic, structural and dynamic properties.

机译:液体半导体的第一原理模拟:电子,结构和动态特性。

获取原文
获取原文并翻译 | 示例

摘要

We develop ab initio molecular dynamics simulation technique to examine liquid semiconductors. Our methods use quantum interatomic forces, computed within the pseudopotential-density functional method (PDFM). In our work, we study typical representatives of IV, III-V and II-VI materials: Si, Ge, GaAs and CdTe. We show that, upon melting, IV and III-V semiconductors experience semiconductor → metal transition, while more ionic II-VI compounds remain semiconductors in the melt. Metallic type conductivity of liquid IV and III-V materials results from the structural changes of the systems in the melt. In our simulations, “open” zinc-blende (diamond for Si and Ge) structures transform into a more close-packed configuration during solid → liquid transition. Their coordination number, equal to 4 in the crystalline phase, changes to ∼6 in the liquid. We demonstrate that this leads to the breaking of covalent bonds and delocalization of electrons. According to our results, the density of states function of liquid IV and III-V semiconductors has a well defined “free electron” character. For these materials, the electrical conductivity jumps by one to two orders of magnitude during melting. This is opposite to the behavior of the majority of II-VI compounds. In our work, we examine CdTe, typical II-VI semiconductor. Although the dc conductivity of CdTe increases by a factor of 40 as it melts, this material remains a semiconductor in the liquid: its electrical conductivity increases with the temperature. At variance with IV and III-V semiconductors, liquid CdTe retains its tetrahedral environment with the coordination number of ∼4. We discover that a significant number of anion-cation bonds are conserved in liquid CdTe as opposed to IV and III-V materials. This is in agreement with the small entropy change observed in the melting process of CdTe. In our simulations, we find that further heating of molten CdTe results in significant structural changes with a transformation to a more close-packed atomic structure. The coordination number of the superheated phase is ∼6 and the dc electrical conductivity is an order of magnitude larger than the melting temperature value. This, along with the disappearing of the finite band gap, suggests a gradual semiconductor → metal transition in CdTe system at a temperature higher than the melting point. We find in liquid CdTe, near the melting temperature, atoms of Te form helicon chains. We suggested that this can be a partial explanation of difficulties encountered in growing pure bulk CdTe from the melt. In our work we demonstrate an effective alternative to the Car-Parrinello method for ab initio molecular dynamics simulations. We also show a practical procedure of ensemble preparation. Good agreement of the electronic, structural and dynamic properties with experiment data validate the usage of our method. We describe an efficient algorithm of diagonalizing the non-local pseudopotential term of Hamiltonian in real space instead of Fourier space. This allows us to accelerate iterative diagonalization schemes for the systems with a large number of atoms. We present a discussion of the implementation of this approach on different computer platforms.
机译:我们开发了从头开始分子动力学模拟技术来检查液体半导体。我们的方法使用在伪电位密度泛函方法(PDFM)中计算的量子原子间力。在我们的工作中,我们研究IV,III-V和II-VI材料的典型代表:Si,Ge,GaAs和CdTe。我们表明,熔化后,IV和III-V半导体会经历半导体→金属的转变,而更多的离子II-VI化合物仍在熔化物中保留半导体。液态IV和III-V材料的金属型电导率是由熔体中系统的结构变化引起的。在我们的模拟中,在固态→液态过渡过程中,“开放式”闪锌矿(Si和Ge的金刚石)结构转变为更密堆积的构型。它们的配位数在结晶相中等于4,在液体中变为约6。我们证明这导致共价键的断裂和电子的离域。根据我们的结果,液态IV和III-V半导体的态密度函数具有明确定义的“自由电子”特征。对于这些材料,在熔化过程中,电导率会跃升一到两个数量级。这与大多数II-VI化合物的行为相反。在我们的工作中,我们研究了典型的II-VI半导体CdTe。尽管CdTe的 dc 电导率在熔化时会增加40倍,但这种材料仍是液体中的半导体:其电导率随温度而增加。与IV和III-V半导体不同,液态CdTe保留其四面体环境,配位数为〜4。我们发现,与IV和III-V材料相比,液态CdTe中保留了大量的阴离子阳离子键。这与CdTe熔化过程中观察到的小熵变化是一致的。在我们的模拟中,我们发现熔融CdTe的进一步加热会导致结构发生重大变化,并转变为更紧密堆积的原子结构。过热相的配位数为〜6,并且 dc 的电导率比熔化温度值大一个数量级。这与有限带隙的消失一起表明在高于熔点的温度下CdTe系统中半导体→金属的逐渐转变。我们在接近熔化温度的液态CdTe中发现Te原子形成螺旋链。我们建议这可以部分解释从熔体中生长纯大块CdTe遇到的困难。在我们的工作中,我们证明了用Car-Parrinello方法替代从头开始分子动力学模拟的有效方法。我们还展示了合奏准备的实用程序。电子,结构和动态特性与实验数据的良好一致性验证了我们方法的使用。我们描述了一种有效的算法,该算法对角化了在汉密尔顿空间中的非局部伪势项,而不是在傅立叶空间中。这使我们能够为具有大量原子的系统加速迭代对角化方案。我们提出了在不同的计算机平台上实施此方法的讨论。

著录项

  • 作者

    Godlevsky, Vitaliy.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Physics Condensed Matter.; Engineering Electronics and Electrical.; Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 1999
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号