首页> 外文学位 >Exploration of the Building Blocks of Catalysis in the Gas Phase: Using Cryogenic Vibrational Spectroscopy to Understand Reactive Species in Organometallic Catalysis
【24h】

Exploration of the Building Blocks of Catalysis in the Gas Phase: Using Cryogenic Vibrational Spectroscopy to Understand Reactive Species in Organometallic Catalysis

机译:探索气相催化的基石:使用低温振动光谱了解有机金属催化中的反应物种

获取原文
获取原文并翻译 | 示例

摘要

Catalysts play a crucial role in the efforts to transform atmospheric carbon dioxide into transportable fuels. The molecular level mechanism of their action is, however, often poorly understood, making it difficult to optimize their performance through rational molecular design. The keys to the mechanism lie in identification of the reaction intermediates in the catalytic cycle, but these have proven difficult to isolate using tradition experimental tools such as FTIR and NMR. Cryogenic ion vibrational predissociation (CIVP) spectroscopy presents a unique opportunity to systematically capture and structurally characterize these transient species cooled close to their potential minima. This Dissertation extends the capabilities of CIVP spectroscopy specifically to generate active catalytic species in the gas phase and dock substrate molecules onto the active site so that their degree of activation can be spectroscopically determined. This work focuses on the homogenous catalytic reduction of CO 2 through a Ni(I) coordination compound, as well as two nitrogen heterocycles: imidazole and pyridine. In the case of the Ni system, importance of the oxidation state of the metal center is established by comparing the efficacies of Ni(I) and Ni(II) in the activation of CO2, CO, N2 and N 2O. This necessitated the implementation of a new method for the reduction of organometallic catalysts to their fragile active states using the unique capabilities of gas phase ion chemistry. After activation, the conversion of CO2 to transportable fuels depends on the introduction of protons, which is often facilitated by "water wires" that provide long range pathways for excess proton translocation. Following this process with vibrational spectroscopy is complicated by the fact that the vibrational signatures of "excess" or mobile protons are often very diffuse. This raises the important issue of the relative contributions of heterogeneous thermal broadening and homogeneous vibrationally excited state dynamics to the observed breadth of the bands. These contributions were unraveled in a comparative study of the "Eigen ion", in which the hydronium molecule is symmetrically hydrogen bonded to three water molecules in its first hydration shell, and the ion-molecule complex in which H3O+ is sequestered in a rigid (18-crown-6) crown ether host. The surprisingly diffuse bands of the latter system, despite being cooled close to its vibrational zero-point energy, clearly establish a dominant role of homogeneous excited state dynamics as the origin of the broadening. This behavior is traced to frustrated intramolecular proton transfer between the oxygen atom on the hydronium core and an oxygen atom on the ring. This gives rise to strong anharmonic coupling between soft modes of the hydronium and its local OH stretching frequencies. Treatment of this coupling in the context of a vibrational adiabatic model quantitatively accounts for the isotope dependence of the broadening. This effect persists even at 0 K as it reflects the displacements of the H3O+ ion in the zero-point vibrational level. To further understand and quantify the temperature of the ions in the trap, the rotational temperature of a small ion (I-- (HOD)) is obtained in two different trapping configurations: a 3D quadrupole trap and a linear octopole trap, which yield surprisingly similar temperatures that are about twice that of the metal electrodes at low temperature.
机译:在将大气中的二氧化碳转化为可运输燃料的努力中,催化剂起着至关重要的作用。但是,人们对其作用的分子水平机制常了解甚少,因此难以通过合理的分子设计来优化其性能。该机制的关键在于识别催化循环中的反应中间体,但是事实证明,使用传统的实验工具(例如FTIR和NMR)很难分离这些中间体。低温离子振动预离解(CIVP)光谱提供了一个独特的机会,可以系统地捕获和结构表征这些冷却到接近其潜在最小值的瞬态物质。本论文扩展了CIVP光谱学的功能,特别是在气相中生成活性催化物质并将底物分子停靠在活性位点上,从而可以通过光谱确定其活化程度。这项工作的重点是通过Ni(I)配位化合物以及两个氮杂环(咪唑和吡啶)对CO 2进行均相催化还原。在Ni体系的情况下,通过比较Ni(I)和Ni(II)在CO2,CO,N2和N 2O活化中的效率来确定金属中心氧化态的重要性。这就需要实施一种利用气相离子化学的独特能力将有机金属催化剂还原为易碎活性状态的新方法。活化后,CO2向可运输燃料的转化取决于质子的引入,质子的引入通常由“水丝”来促进,“水丝”为质子的过度转运提供了长距离的途径。由于“过量”或移动质子的振动信号通常非常分散,因此用振动光谱法跟随该过程变得复杂。这就提出了一个重要的问题,即非均质热展宽和均匀振动激发态动力学对所观察到的谱带宽度的相对贡献。在“本征离子”的比较研究中没有阐明这些贡献,在该研究中,水合氢分子在其第一个水合壳中对称地氢键合到三个水分子上,而离子-分子络合物则将H3O +螯合在硬质化合物中(18 -crown-6)冠醚主机。尽管被冷却到接近其振动零点能量,但后一个系统的令人惊讶的扩散带清楚地确立了均匀激发态动力学作为扩展起点的主导作用。此行为可追溯到在水合氢核上的氧原子与环上的氧原子之间的分子内质子转移受阻。这在水合氢的软模式与其局部OH拉伸频率之间引起了强烈的非谐耦合。在振动绝热模型的背景下对该耦合的处理定量地解释了扩展的同位素依赖性。这种影响甚至在0 K时仍然存在,因为它反映了H3O +离子在零点振动能级上的位移。为了进一步了解和量化阱中离子的温度,可以通过两种不同的捕获方式获得小离子(I--(HOD))的旋转温度:3D四极阱和线性八极阱,其出奇的产率类似的温度约为低温下金属电极的两倍。

著录项

  • 作者

    Craig, Stephanie Marsili.;

  • 作者单位

    Yale University.;

  • 授予单位 Yale University.;
  • 学科 Physical chemistry.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 243 p.
  • 总页数 243
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号