首页> 外文学位 >Medial Axis Approximation and Regularization
【24h】

Medial Axis Approximation and Regularization

机译:中轴逼近和正则化

获取原文
获取原文并翻译 | 示例

摘要

Medial axis is a classical shape descriptor. Among many good properties, medial axis is thin, centered in the shape, and topology preserving. Therefore, it is constantly sought after by researchers and practitioners in their respective domains. However, two barriers remain that hinder wide adoption of medial axis.;First, exact computation of medial axis is very difficult. Hence, in practice medial axis is approximated discretely. Though abundant approximation methods exist, they are either limited in scalability, insufficient in theoretical soundness, or susceptible to numerical issues. Second, medial axis is easily disturbed by small noises on its defining shape. A majority of current works define a significance measure to prune noises on medial axis. Among them, local measures are widely available due to their efficiency, but can be either too aggressive or conservative. While global measures outperform local ones in differentiating noises from features, they are rarely well-defined or efficient to compute.;In this dissertation, we attempt to address these issues with sound, robust and efficient solutions. In Chapter 2, we propose a novel medial axis approximation called voxel core. We show voxel core is topologically and geometrically convergent to the true medial axis. We then describe a straightforward implementation as a result of our simple definition. In a variety of experiments, our method is shown to be efficient and robust in delivering topological promises on a wide range of shapes. In Chapter 3, we present Erosion Thickness (ET) to regularize instability. ET is the first global measure in 3D that is well-defined and efficient to compute. To demonstrate its usefulness, we utilize ET to generate a family of shape revealing and topology preserving skeletons. Finally, we point out future directions, and potential applications of our works in real world problems.
机译:中间轴是经典的形状描述符。在许多优良特性中,中间轴很细,位于形状的中心,并且可以保留拓扑。因此,研究人员和从业人员一直在各自领域中不断寻求它。但是,仍然存在两个阻碍中轴广泛采用的障碍。首先,中轴的精确计算非常困难。因此,实际上,中间轴是离散地近似的。尽管存在大量逼近方法,但是它们要么在可伸缩性方面受限制,理论上的健全性不足,要么容易受到数值问题的影响。其次,内侧轴很容易受到其定义形状上的小噪音的干扰。当前的大多数工作都定义了一种重要的措施来修剪中轴上的噪声。其中,由于其效率高,可以广泛采用本地措施,但可能过于激进或过于保守。虽然全局度量在将噪声与特征区分开来方面优于局部度量,但它们很少得到很好的定义或有效的计算。;本文试图通过合理,健壮和有效的解决方案来解决这些问题。在第2章中,我们提出了一种新颖的中间轴近似称为体素核心。我们显示体素核心在拓扑和几何上收敛到真实的中间轴。然后,根据我们的简单定义,我们将描述一个简单的实现。在各种实验中,我们的方法显示出在各种形状上都能实现拓扑承诺的高效和鲁棒性。在第3章中,我们提出了侵蚀厚度(ET)以规范不稳定性。 ET是第一个定义明确且计算效率高的3D全局度量。为了证明其有用性,我们利用ET生成了一系列形状揭示和拓扑保留骨骼。最后,我们指出了未来的方向,以及我们的作品在现实世界中的潜在应用。

著录项

  • 作者

    Yan, Yajie.;

  • 作者单位

    Washington University in St. Louis.;

  • 授予单位 Washington University in St. Louis.;
  • 学科 Computer science.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号