首页> 外文学位 >Adsorption interactions of s-triazine herbicides and natural organic matter by activated carbon.
【24h】

Adsorption interactions of s-triazine herbicides and natural organic matter by activated carbon.

机译:活性炭吸附s-三嗪除草剂与天然有机物的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Predictive information is lacking on treatment performance in natural waters where adsorptive interactions of s-triazine herbicides (atrazine and cyanazine), trace organic contaminants, and natural organic matter (NOM) render a great deal of uncertainty in the carbon capacity and adsorption kinetics. Therefore, the objectives of research were to quantify the effect of NOM adsorption by GAC on the removal of atrazine and cyanazine from drinking water, to evaluate the adsorptive interactions between herbicides at low concentrations, and to compare the laboratory results with GAC filter-adsorber performance at the Higginsville Water Treatment Plant, Missouri.;Atrazine and cyanazine exhibit similar adsorption capacity. Therefore, atrazine and cyanazine adsorption can be evaluated as "Total" s-triazine adsorption. Individual s-triazine adsorption in dual-component systems can be predicted by conducting Total s-triazine isotherm experiments as in a single-component system. The initial s-triazine concentrations have a significant impact on the adsorption isotherms. Atrazine adsorption decreases with cyanazine present, and vice versa. Isotherm data for the two-component systems (atrazine and cyanazine) are predicted well by the Ideal Adsorbed Solution Theory model with the single-component Freundlich parameters.;For the ratios of atrazine metabolite (hydroxyatrazine; deethylatrazine, and deisopropylatrazine) to atrazine concentrations normally found in natural water (up to 50%), atrazine is favored over the metabolites by carbon adsorption. Also, atrazine is more adsorbable than trihalomethanes. An increase in total trihalomethanes Co (47 to 225 mug/L) slightly decreased atrazine adsorption (<4%). For trihalomethane levels normally found in water plants, the effect of trihalomethanes on atrazine adsorption is negligible.;For natural water, atrazine adsorption is reduced at lower pH's in which NOM adsorption is increased. A large fraction of the NOM in Higginsville Lake raw water has a molecular weight less than 3K Dalton. In comparison to higher molecular weight NOM, this fraction yields greater adsorption competition where atrazine adsorption decreased 23% with GAC and 39% with PAC. Greater competitive effects of NOM on atrazine adsorption occur at low initial atrazine concentration. Adsorption of atrazine and cyanazine by GAC is not strongly influenced by the inorganic background matrix.;Newly installed GAC filter-adsorbers (7.5-min empty-bed contact time) showed no detection or very low levels of s-triazine herbicides in the first six months of service. Older GAC filter-adsorbers (more than three year service) effluent had higher effluent s-triazine herbicide levels, but still less than 3 mug/L, and their removals of s-triazines ranged from 30 to 60%. GAC filter-adsorbers initially showed high reductions of UV254, but declined to 20% removal over long-term operation. NOM reduction and removal of s-triazines by anthracite filters are negligible. With the effluent from the anthracite and GAC filters blended together, parallel operations of GAC contactors can effectively control s-triazine herbicides in finished water and extend GAC bed life. Both field and batch studies conclude that the capacity of GAC for atrazine is much higher than with PAC.;In using the Freundlich parameters in models, precaution should be exercised between the test conditions and the actual field conditions. Site-specific studies are recommended to actually determine adsorption performance.
机译:缺乏关于天然水处理性能的预测性信息,其中s-三嗪除草剂(阿特拉津和氰嗪),微量有机污染物和天然有机物(NOM)的吸附相互作用在碳容量和吸附动力学方面存在很大不确定性。因此,研究的目的是量化GAC吸附NOM对饮用水中阿特拉津和氰嗪去除的影响,评估低浓度除草剂之间的吸附相互作用,并将实验室结果与GAC滤池-吸附器性能进行比较。在密苏里州希金斯维尔水处理厂,阿特拉津和氰嗪的吸附能力相似。因此,阿特拉津和氰嗪的吸附可以评价为“总” s-三嗪吸附。如在单组分系统中一样,可以通过进行总s-三嗪等温线实验来预测双组分系统中的单个s-三嗪吸附。 s-三嗪的初始浓度对吸附等温线有重大影响。氰嗪的存在会降低阿特拉津的吸附,反之亦然。通过具有单组分Freundlich参数的理想吸附溶液理论模型,可以很好地预测两组分系统(阿特拉津和氰嗪)的等温线数据;对于阿特拉津代谢产物(羟基阿特拉津,脱乙基阿特拉津和去异丙基阿特拉津)与阿特拉津浓度的比值,通常在天然水中(高达50%)中发现at去津比碳氢化合物更易被碳吸附。同样,at去津比三卤甲烷更具吸附性。总三卤甲烷的增加(47至225杯/升)会降低阿特拉津的吸附(<4%)。对于水厂中通常存在的三卤甲烷水平,三卤甲烷对at去津吸附的影响可以忽略不计;对于天然水,在较低的pH值(NOM吸附增加)下,at去津吸附会降低。希金斯维尔湖原水中大部分NOM的分子量小于3K道尔顿。与较高分子量的NOM相比,该馏分产生更大的吸附竞争,其中阿特拉津的GAC吸附量降低了23%,PAC降低了39%。在低初始r去津浓度下,NOM对at去津吸附产生更大的竞争作用。 GAC对at去津和氰嗪的吸附不受无机背景基质的强烈影响。;新安装的GAC过滤吸附剂(空床接触时间为7.5分钟)显示前六种中未检测到s-三嗪除草剂或含量非常低数月的服务。较旧的GAC过滤器吸附剂(使用三年以上)废水中的S-三嗪除草剂水平较高,但仍低于3杯/升,并且它们对S-三嗪的去除率为30%至60%。 GAC过滤器吸附剂最初显示出UV254的大幅降低,但在长期运行中其去除率降至20%。用无烟煤滤池进行NOM还原和去除S-三嗪几乎可以忽略不计。将无烟煤和GAC过滤器的废水混合在一起,GAC接触器的并行操作可以有效控制成品水中的S-三嗪除草剂,并延长GAC床的使用寿命。现场研究和批量研究均得出结论,GAC对at去津的容量远高于PAC。在模型中使用Freundlich参数时,应在测试条件和实际现场条件之间采取预防措施。建议进行特定地点的研究,以实际确定吸附性能。

著录项

  • 作者

    Leung, Kevin Shurch-Yee.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Environmental engineering.;Civil engineering.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 354 p.
  • 总页数 354
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号