首页> 外文学位 >Catalytic mechanism and redox properties of human manganese superoxide dismutase.
【24h】

Catalytic mechanism and redox properties of human manganese superoxide dismutase.

机译:人锰超氧化物歧化酶的催化机理和氧化还原特性。

获取原文
获取原文并翻译 | 示例

摘要

Human manganese superoxide dismutase (Mn-SOD) is a detoxifying enzyme in mitochondria that converts superoxide (O2·- ) into oxygen (O2) and hydrogen peroxide (H2O 2). This reaction requires proton and electron transfer between the active site metal and superoxide. Although it is catalytically very active, human Mn-SOD quickly becomes product inhibited by peroxide. The goal of this work is to use site-specific mutagenesis and characterization of the resulting mutants to understand the role in catalysis and inhibition of two prominent active-site residues, Histidine 30 (His30) and Glutamme 143 (Gln143). To do so, I used a variety of techniques including X-ray crystallography, scanning calorimetry, pulse radiolysis, and stopped-low spectrophotometry, performed in our laboratory and through collaborations. In addition, I designed, ordered, and installed the appropriate equipment to measure the redox potential of human Mn-SOD in our laboratory.;Crystallography showed that mutations at both sites 30 and 143 interrupted the hydrogen-bonded network around the metal which possibly affected proton transfer during catalysis. The mutant His30Asn remained uninhibited during catalysis and could eliminate superoxide more efficiently than the wild type enzyme. Mutations at position 143 had a profound effect on both the kinetics of the enzyme and the redox state of the active site metal. The Gln143 mutants were not product inhibited but were slower than the wild type by two to three orders of magnitude, and mutations at this site altered the redox state of the enzyme.;The midpoint potential of human Mn-SOD was measured both through single point equilibrium and redox titration. The two methods yielded agreeable values with Em = 393 +/- 35 mV. This value lies right between the reduction and oxidation midpoint potentials of superoxide, which facilitates both reactions.;Therefore, Gln143 and His30 are required for rapid catalysis but not essential for activity. The Gln143 stabilizes manganese in the oxidized state and contributes to the fine-tuning of the redox potential which is required for efficient catalysis. The His30 is involved in the formation of the product-inhibited complex in wild type human MnSOD; this inhibition is abolished in the mutant His30Asn. Therefore, this mutant is a good candidate for gene therapy research to provide better cytoprotection under states of oxidative stress.
机译:人锰超氧化物歧化酶(Mn-SOD)是线粒体中的一种解毒酶,可将超氧化物(O2·-)转化为氧气(O2)和过氧化氢(H2O 2)。该反应需要在活性位点金属和超氧化物之间进行质子和电子转移。尽管它的催化活性非常强,但人Mn-SOD很快成为过氧化物抑制的产物。这项工作的目的是利用位点特异性诱变和表征所得突变体,以了解催化和抑制两个重要的活性位点残基,组氨酸30(His30)和Glutamme 143(Gln143)的作用。为此,我使用了多种技术,包括X射线晶体学,扫描量热法,脉冲辐射分解法和低速停止分光光度法,这些技术是在我们实验室中以及通过合作完成的。此外,我在实验室设计,订购并安装了适当的设备来测量人类Mn-SOD的氧化还原电势。晶体学分析表明,位点30和143处的突变中断了金属周围的氢键网络,这可能影响了金属催化过程中质子转移。突变的His30Asn在催化过程中保持不受抑制,与野生型酶相比,可以更有效地消除超氧化物。 143位的突变对酶的动力学和活性位点金属的氧化还原状态都有深远的影响。 Gln143突变体不受产物抑制,但比野生型慢2至3个数量级,并且该位点的突变改变了该酶的氧化还原状态。;人类Mn-SOD的中点电位通过单点测量平衡和氧化还原滴定。两种方法得出的结果一致,Em = 393 +/- 35 mV。该值恰好在超氧化物的还原和氧化中点电位之间,这有利于两个反应。因此,Gln143和His30对于快速催化是必需的,但对于活性不是必需的。 Gln143使锰稳定在氧化态,并有助于有效催化所需的氧化还原电位的微调。 His30参与野生型人MnSOD中产物抑制复合物的形成。该抑制在突变的His30Asn中被消除。因此,该突变体是基因治疗研究的良好候选者,以在氧化应激状态下提供更好的细胞保护。

著录项

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Biology Molecular.;Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 102 p.
  • 总页数 102
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号