首页> 外文学位 >On automotive engine intake manifold dynamic modeling, estimation, and control.
【24h】

On automotive engine intake manifold dynamic modeling, estimation, and control.

机译:在汽车发动机进气歧管上进行动态建模,估计和控制。

获取原文
获取原文并翻译 | 示例

摘要

A first principles mean value dynamic model of an engine's intake manifold has been developed that includes external exhaust gas recirculation (EGR) and variable cam timing (VCT). Using a perfect mixing assumption, mass conservation linearity, and an engine pumping model, it was possible to separate fresh air dynamics from external exhaust gas recirculation dynamics. This approach gives a simple solution that can be easily implemented and utilized in real-time discrete control systems. In total, the model, included both fresh air dynamics and external exhaust gas recirculation dynamics, has three parameters. Experimental data validated the modeling approach and real-time implementation.; An external exhaust gas recirculation control system, including an upstream control valve and a downstream measuring orifice, was modeled using thermodynamic orifice flow equations and mass conservation. A simplified nonlinear approximation to the full adiabatic orifice model was analytically shown to provide low approximation error when constrained by physical engine operation limits. Steady state engine dynamometer data verified the approximation to the EGR system.; The validated intake manifold dynamic model and EGR system model were utilized to develop an EGR flow estimation using a limited sensor set. Namely, a sliding observer was developed for dynamically estimating EGR flow primarily using a throttle body mass air flow sensor and a differential pressure across the downstream EGR measuring orifice. A sliding observer was selected because of the nonlinear model coupling and calibration ease.; From the intake manifold dynamic model and the EGR system model, a simulation was developed for use in controller and estimator design. The sliding observer was first validated using the simulation. Experimental vehicle data was then used to validate the observer. A very accurate EGR flow estimate was obtained with high bandwidth.; Two controllers were then developed using the models, simulation, and observer. A conventional PID type controller was compared and contrasted in simulation to a time-optimal controller. A linearization technique was used in developing the time-optimal controller. To give a worst case comparison, the PID controller used estimated EGR flow in feedback control, while the time-optimal controller assumed perfect measurement. In other words, the PID controller used the sliding observer in the loop while the time optimal controller was provided with a perfect flow measurement. Finally, the tuned PID controller was experimentally validated in a vehicle.
机译:已经开发了发动机进气歧管的第一原理均值动态模型,该模型包括外部废气再循环(EGR)和可变凸轮正时(VCT)。使用完美的混合假设,质量守恒线性和发动机泵送模型,可以将新鲜空气动力学与外部废气再循环动力学分开。这种方法提供了一种简单的解决方案,可以在实时离散控制系统中轻松实现和利用。总体而言,该模型(包括新鲜空气动力学和外部废气再循环动力学)具有三个参数。实验数据验证了建模方法和实时实施。使用热力学孔板流量方程和质量守恒对外部废气再循环控制系统进行建模,包括上游控制阀和下游测量孔。解析地显示了对整个绝热孔口模型的简化非线性逼近,当受到物理发动机运行极限的限制时,该方法可提供较低的逼近误差。稳态发动机测功机数据验证了对EGR系统的近似性。经过验证的进气歧管动态模型和EGR系统模型被用于使用有限的传感器组来开发EGR流量估算。即,开发了用于主要利用节气门体质量空气流量传感器和下游EGR测量孔两端的压差来动态地估计EGR流量的滑动观察器。选择滑动观察器是因为非线性模型耦合和校准容易。根据进气歧管动力学模型和EGR系统模型,开发了用于控制器和估算器设计的仿真。首先使用模拟对滑动观察器进行了验证。然后使用实验车辆数据来验证观察者。高带宽获得了非常精确的EGR流量估算值。然后使用模型,仿真和观察器开发了两个控制器。对传统的PID型控制器进行了比较,并在仿真中与时间最优控制器进行了对比。在开发时间最佳控制器时使用了线性化技术。为了进行最坏的比较,PID控制器在反馈控制中使用了估计的EGR流量,而时间最优的控制器则假设是完美的测量。换句话说,PID控制器在循环中使用了滑动观测器,而时间最佳控制器具有完美的流量测量。最终,在车辆中对调谐的PID控制器进行了实验验证。

著录项

  • 作者

    Russell, John D.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.; Engineering Automotive.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 175 p.
  • 总页数 175
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;自动化技术及设备;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号