首页> 外文学位 >Integrating rock physics and flow simulation to reduce uncertainties in seismic reservoir monitoring .
【24h】

Integrating rock physics and flow simulation to reduce uncertainties in seismic reservoir monitoring .

机译:结合岩石物理和流体模拟减少地震储层监测的不确定性。

获取原文
获取原文并翻译 | 示例

摘要

Over the last decade, with the increasing need to interpret seismic attributes for hydrocarbon detection and reservoir management, it has become most critical to reliably and accurately quantify not only the effects of pore fluids, but also the associated uncertainties. Uncertainty in sub-resolution saturation scales introduce uncertainties in interpretation of seismic signatures in terms of fluid saturations. The goal of this thesis is to identify and quantify uncertainties in the seismic response of pore fluid properties and distributions, and to reduce these uncertainties by integrating traditional rock physics techniques with knowledge of reservoir fluid flow.; Flow simulators often do not correctly predict seismically significant details such as the saturation distribution within a simulator cell, or the relative amounts of free gas and dissolved gas. We identify the production scenarios where such uncertainties can significantly affect the seismic modeling and interpretation, and recommend strategies for dealing with such situations.; A coarse-scale (patchy) mix of fluids always has a higher compressional velocity than a fine-scale (uniform) mix. If we do not know the sub-seismic scales of fluid distribution, the question that arises is: When is the uniform model appropriate, and when should we use the patchy model? We use fine-scale flow simulations to constrain sub-seismic scales of saturation and identify critical reservoir parameters that impact the sub-resolution saturation scales. We present a reservoir monitoring case study in which downscaling of smooth saturation outputs from the flow simulator to a more realistic patchy distribution was required to provide a good quantitative match with the time-lapse seismic data, even though the fine details in the saturation distribution were below seismic resolution. This important result has the potential to significantly impact and enhance the applicability of seismic data in reservoir monitoring.; Interdisciplinary integration of seismic measurements and rock physics with multiphase fluid flow helps to reduce uncertainties in sub-resolution spatial fluid distributions, and as a result, reduces uncertainties in interpreting seismic attributes for eismic attributes for reservoir management.
机译:在过去的十年中,随着对解释油气勘探和储层管理地震属性的需求日益增加,可靠,准确地量化孔隙流体的影响以及相关的不确定性已变得至关重要。亚分​​辨率饱和度标度的不确定性在流体饱和度方面为地震特征的解释引入了不确定性。本文的目的是识别和量化孔隙流体性质和分布在地震响应中的不确定性,并通过将传统的岩石物理学技术与储层流体流动知识相结合来减少这些不确定性。流量模拟器通常无法正确预测地震重要的细节,例如模拟器单元内的饱和度分布或游离气体和溶解气体的相对量。我们确定了这些不确定性会严重影响地震建模和解释的生产方案,并提出了应对此类情况的策略。粗尺度(均匀)的流体混合物始终比细尺度(均匀)的混合物具有更高的压缩速度。如果我们不知道流体分布的亚地震尺度,那么就会出现一个问题:统一模型何时合适,何时应使用补丁模型?我们使用精细尺度的流动模拟来约束饱和度的次地震规模,并确定影响次分辨率饱和度规模的关键储层参数。我们提出了一个储层监测案例研究,其中需要从流量模拟器向平滑的斑块分布平滑饱和输出的缩小比例,以便与时移地震数据提供良好的定量匹配,即使饱和度分布的精细细节低于地震分辨率。这一重要结果可能会显着影响地震数据并提高其在储层监测中的适用性。地震测量和岩石物理学与多相流体流的跨学科整合有助于减少亚分辨率空间流体分布的不确定性,从而减少解释地震属性的不确定性储层管理的地震属性。

著录项

  • 作者

    Sengupta, Madhumita.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Geophysics.; Engineering Petroleum.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地球物理学;石油、天然气工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号