首页> 外文学位 >Processing-microstructure-property relationships of tin oxide thin films for gas sensor applications.
【24h】

Processing-microstructure-property relationships of tin oxide thin films for gas sensor applications.

机译:气体传感器应用中氧化锡薄膜的加工-微观结构-性能关系。

获取原文
获取原文并翻译 | 示例

摘要

Tin dioxide (SnO2) with rutile type structure is a wide band n-type semiconductor which exhibits unique electronic and optical properties. In application of this material as gas sensors, a film form of SnO2 provides high surface area to volume ratio and leads to high sensitivity and fast responses. It has been found that the substrate material, the deposition conditions and the annealing procedure may directly influence the microstructure of thin films, hence control gas sensing properties. This thesis describes a concerted effort to study the microstructure-property relationship in SnO 2 thin film sensors. Our studies help to elucidate the effects of microstructure on sensor performance and provide some fundamental understanding of sensor design principals.; Thin films with different microstructures were obtained by using two deposition techniques, namely pulsed laser deposition (PLD) and electron-beam evaporation, and a variety of substrates, such as Al2O3(1¯012), Al2O3(112¯0) and Al2O3(0001). The obtained SnO2 thin films include single crystalline films, compact epitaxial films with different grain boundary density, and porous films with rough surface. Property measurements reveal that single crystal has low gas sensitivity and the performance of compact films depends on the grain boundary density. On the other hand, porous films exhibit high sensitivity. Based on the experimental results, a model is proposed to interpret the observed phenomena in terms of depletion and grain boundary.; We also investigated the effects of film thickness and additives, both bulk and surface, on gas sensitivity. Among the three films examined with thickness of 20nm, 60nm and 100nm, the thinnest film showed better sensitivity than the thicker ones. Dopants influence the sensitivity through the modification of depletion region. Trivalent additives (acceptor type) result in increased depletion layer thickness, hence improve sensor performance. On the contrary, films doped by pentavalent additives (donor type) only have very low gas sensitivity due to the thin depletion layer in the films. We believe that the volume ratio of the depletion region over the total volume is a key factor in determining sensitivity. Addition of surface Pt, even with a thickness of 1nm, is an effective way for improving gas sensitivity.
机译:金红石型结构的二氧化锡(SnO 2 )是一种宽带n型半导体,具有独特的电子和光学特性。在将该材料用作气体传感器时,SnO 2 的薄膜形式可提供高的表面积与体积之比,并具有很高的灵敏度和快速响应。已经发现,衬底材料,沉积条件和退火过程可以直接影响薄膜的微观结构,从而控制气体感测特性。本文描述了共同努力研究SnO 2 薄膜传感器的微观结构与性能的关系。我们的研究有助于阐明微观结构对传感器性能的影响,并提供对传感器设计原理的一些基本了解。利用两种沉积技术,即脉冲激光沉积(PLD)和电子束蒸发,以及多种衬底,例如Al 2 O 3 ,获得了具有不同微观结构的薄膜。 sub>(1’012),Al 2 O 3 (112¯0)和Al 2 O 3 (0001)。获得的SnO 2 薄膜包括单晶膜,具有不同晶界密度的致密外延膜和具有粗糙表面的多孔膜。性能测量表明,单晶具有较低的气体敏感性,致密膜的性能取决于晶界密度。另一方面,多孔膜表现出高灵敏度。根据实验结果,提出了一个模型,以耗尽和晶界来解释观察到的现象。我们还研究了薄膜厚度和添加剂(体积和表面)对气体敏感性的影响。在三个厚度分别为20nm,60nm和100nm的薄膜中,最薄的薄膜显示出比较厚的薄膜更好的灵敏度。掺杂剂通过改变耗尽区来影响灵敏度。三价添加剂(受体类型)会导致耗尽层厚度增加,从而提高传感器性能。相反,由于五价添加剂(供体类型)掺杂的薄膜中的耗尽层薄,因此其气体敏感性非常低。我们认为,耗尽区与总体积的体积比是确定灵敏度的关键因素。即使具有1nm的厚度,添加表面Pt也是提高气体敏感性的有效方法。

著录项

  • 作者

    Fu, Li.;

  • 作者单位

    University of Michigan.;

  • 授予单位 University of Michigan.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 208 p.
  • 总页数 208
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号