首页> 外文学位 >Fundamental mechanisms of microstructural evolution during spray forming.
【24h】

Fundamental mechanisms of microstructural evolution during spray forming.

机译:喷射成形过程中微观结构演变的基本机制。

获取原文
获取原文并翻译 | 示例

摘要

Spray forming consists of two physical stages: atomization and deposition. In principle, the spray forming process inherently avoids the extreme thermal excursions, extensive macrosegregation and concomitant degradation in mechanical properties, normally associated with ingot metallurgy. This synthesis approach also eliminates the need to handle fine reactive metallic powders as is necessary with powder metallurgy. In addition, spray forming can be readily used to synthesize particulate reinforced metal matrix composites through different approaches. Presently, spray forming is used for the production of a wide variety of alloys and materials such as Al, Mg, Fe and Ni-based alloys and metal matrix composites, as well as intermetallics. Significant technical progress over the past three decades has helped spray forming to mature into a manufacturing technique. However, review of the published literature reveals that, despite numerous commercial success stories, the fundamentals of spray forming, in many cases, remain to be established. The present dissertation is organized as follows. First, computational fluid dynamic techniques are implemented to analyze the gas flow behavior in a typical atomization configuration with nitrogen as the modeled gas. Second, a numerical approach is implemented to analyze the heat transfer, nucleation and growth of individual droplets during both flight and deposition, and the calculated results, along with the microstructural observation, are used to interpret the formation of the heterogeneous grain morphology in the initially deposited material and the generation of the equiaxed grain morphology beyond a critical deposited thickness. Third, a numerical model is established to describe the thermal environment of a collection of individual droplets thereby predicting the formation of a mushy layer under different processing parameters. Fourth, the aforementioned model is used to investigate the cooling processes of individual droplets and their deposited material, and to identify the factors controlling the microstructure and properties of the deposited material. Fifth, three different-spacing layered MMCs are synthesized by co-injection to investigate the relationship between the tensile properties and fracture toughness of the MMCs and the layered geometrical structure, and to gain insight into optimizing the layered geometrical arrangement for further improved mechanical properties.
机译:喷射成型包括两个物理阶段:雾化和沉积。原则上,喷射成形工艺固有地避免了通常与铸锭冶金相关的极端的热漂移,广泛的宏观偏析和伴随的机械性能降低。这种合成方法还消除了处理粉末冶金所需的精细反应性金属粉末的需求。另外,通过不同的方法,喷射成形可以容易地用于合成颗粒增强金属基质复合材料。目前,喷射成形用于生产多种合金和材料,例如铝,镁,铁和镍基合金,金属基复合材料以及金属间化合物。在过去的三十年中,重大的技术进步已使喷涂成型发展成为一种成熟的制造技术。然而,对已发表文献的回顾表明,尽管有许多商业上的成功案例,但在许多情况下,喷射成形的基础仍待确立。本论文的组织如下。首先,采用计算流体动力学技术来分析以氮气为模型气体的典型雾化配置下的气流行为。其次,采用数值方法来分析单个液滴在飞行和沉积过程中的传热,成核和生长,并使用计算结果以及微观结构观察来解释初始时异质晶粒形态的形成。沉积材料和超过临界沉积厚度的等轴晶粒形态的产生。第三,建立数值模型来描述单个液滴集合的热环境,从而预测在不同处理参数下糊状层的形成。第四,上述模型用于研究单个液滴及其沉积材料的冷却过程,并确定控制沉积材料的微观结构和性能的因素。第五,通过共注入合成三种不同间距的层状MMC,以研究MMC的拉伸性能和断裂韧性与层状几何结构之间的关系,并深入了解优化层状几何排列以进一步改善机械性能。

著录项

  • 作者

    Xu, Qingzhou.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2000
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号