首页> 外文学位 >Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators
【24h】

Enhancement Of Sensing Capabilities And Functionalization Of Optical Microresonators

机译:增强光学微谐振器的传感能力和功能

获取原文
获取原文并翻译 | 示例

摘要

Optical microresonators have been demonstrated to provide a large enhancement in electric field by containing an resonant mode in a very small volume. This resonant enhancement is proportional to the quality of the resonator, which for microspheres has been demonstrated to be on the order of 1010. These devices can be leveraged to greatly improve light-matter interaction and for this reason the theoretical background of optical microresonators is discussed in the second chapter. This includes the use of COMSOL Multiphysics to model the mode structure and scattering from different resonator geometries. The second chapter also contains details on the fabrication and experimental design of optical microresonators. This includes the fabrication of fiber tapers for evanescent wave coupling into the devices.;Once the theoretical framework for utilizing resonators as tools for enhancement has been established in the second chapter, we progress to the discussion of the microbubble geometry and its potential for use as an on-chip sensor system. Topics covered include design, fabrication, and theoretical analysis of the mode structure in this geometry. Modal interaction with a liquid filled microbubble is demonstrated. Additionally, the use of microbubble resonators as highly accurate temperature sensors is demonstrated experimentally and theoretically.;In chapter 4 we investigate the use of silica microspheres as sensing devices; specifically, using them for the purpose of sensing nano-particles and chemicals in incredibly minute quantities. In this section microresonators are demonstrated to provide enhancement to Raman scattering from nano-scale particles. This configuration retains the traditional sensing methods of resonators by observing mode shifting and splitting in the resonance spectrum, while adding in a label-free sensing ability to determine material composition on adhered micro and nanoparticles.;The fifth chapter discusses the characterization of a new class of materials known as two dimensional materials (2D materials). Typically made from single atomic sheets of transition metal dichalcogenides, they are called two dimensional due to their incredibly small thickness. Monolayers of metal dichalcogenides offer large values for optical nonlinear susceptibility and can be used to generate highly efficient nonlinear optical phenomena. This chapter seeks to understand and describe the capabilities of these materials in a context of eventually integrating them into optical microresonators to create a new class of silica-based miniaturized nonlinear optical devices.;The final chapter in this dissertation covers the proposed and in-progress work related to those topics already covered in previous chapters. This includes direct growth of transition metal dichalcogenides onto microsphere resonators to create narrow linewidth microscopic lasers. Another novel photonic device consists of a single mode optical fiber etched to expose the core onto which a monolayer of 2D material is adhered. This presents the capability to create a simple photonic device which can easily be integrated as a discrete optical component capable of producing guided photoluminescence or extremely high second harmonic generation. Finally, spectral holography is discussed as a potential tool to record the phase information of light traveling through optical microresonators, adhered particles, and directly grown 2D materials.
机译:已经证明光学微谐振器通过以非常小的体积包含谐振模式来提供电场的大增强。这种共振增强与共振器的质量成正比,对于微球,共振器的质量已被证明约为1010。可以利用这些器件极大地改善光物质的相互作用,因此,对光学微共振器的理论背景进行了讨论。在第二章中。这包括使用COMSOL Multiphysics对模式结构和来自不同谐振器几何形状的散射进行建模。第二章还详细介绍了光学微谐振器的制造和实验设计。其中包括制造用于将瞬态波耦合到器件中的光纤锥度。;一旦在第二章中建立了将谐振器用作增强工具的理论框架,我们将继续讨论微泡的几何形状及其在微泡中的应用潜力。片上传感器系统。涵盖的主题包括此几何中模式结构的设计,制造和理论分析。演示了与液体填充的微泡的模态相互作用。此外,还通过实验和理论证明了将微气泡谐振器用作高精度温度传感器。在第四章​​中,我们研究了将二氧化硅微球体用作传感装置;特别是,将它们用于检测极少量的纳米颗粒和化学物质的目的。在本节中,微谐振器被证明可以增强纳米级颗粒的拉曼散射。这种配置通过观察共振谱中的模式移动和分裂,保留了传统的共振器传感方法,同时增加了无标记的传感能力,可以确定粘附的微粒和纳米颗粒上的材料成分。第五章讨论了新类别的表征称为二维材料(2D材料)的材料。通常由过渡金属二卤化物的单原子片制成,由于其极小的厚度,它们被称为二维。金属二卤化硅的单分子层为光学非线性敏感性提供了很大的价值,可用于产生高效的非线性光学现象。本章试图在最终将它们集成到光学微谐振器中以创建一类新型的基于二氧化硅的微型非线性光学器件的背景下理解和描述这些材料的功能。本论文的最后一章涵盖了拟议和正在进行的研究与前面各章中已经讨论过的主题相关的工作。这包括将过渡金属二卤化物直接生长到微球谐振器上,以产生狭窄的线宽显微镜激光器。另一种新颖的光子设备包括单模光纤,该单模光纤被蚀刻以暴露芯体,在该芯体上附着了2D材料的单层。这提供了创建简单光子器件的能力,该器件可以轻松集成为能够产生引导光致发光或极高的二次谐波生成的分立光学组件。最后,讨论了光谱全息术,作为记录通过光学微谐振器,粘附的颗粒和直接生长的2D材料传播的光的相位信息的潜在工具。

著录项

  • 作者

    Cocking, Alexander.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Electrical engineering.;Optics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 135 p.
  • 总页数 135
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号